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Chapter Overview

This chapter discusses thunks which are special types of procedures and procedure calls you can use to
defer the recution of some procedure calhlthough the use of thunks is not commonplace in standard
assembly code, their semantics are quite usefil fartificial intelligence) and other programBhe proper
use of thunks can dramatically impeothe performance of certain programs. Perhaps a reason thunks do
not find extensie use in assembly code is because most assembly language programmensaaee afna
their capabilities. This chapter will solg that problem by presenting the défon of thunks and describe
how to use them in your assembly programs.

1.2

First Class Objects

The actual la-level implementation of a thunk, and thedoation of a thunk, is rather simple. Wwo
ever, to understand whyou would want to use a thunk in an assembly language program we need to jump to
a higher lgel of abstraction and discuss the conceffiiaft Class Objects

A first class object is one you can trea¢ l&knormal scalar dataniable.You can pass it as a parameter
(using an arbitrary parameter passing mechanism), you can return it as a function result, you can change the
object’s wvalue via certain lgal operations, you can retvie its \alue, and you can assign one instance of a
first class object to anothekn int32 variable is a goodxample of a fist class object.

Now consider an arrayln mary languages, arrays are naosficlass objects. Oh, you can pass them as
parameters and operate on therat ywu cant assign one array to another nor can you return an array as a
function result in may languages. In other languageswheer, all these operations are permissible on
arrays so theare frst class objects (in such languages).

A statement sequence (especially on®lving procedure calls) is generally not isfficlass object in
mary programming languages. ofFexample, in C/C++ or &cal/Delphi you cannot pass a sequence of
statements as a parametessign them to aaviable, return them as a function result, or otherwise operate on
them as though tlyewvere data.You cannot create arbitrary arrays of statements nor can you ask a sequence
of statements toxecute themsebs &cept at their point of declaration.

If you've never used a language that alloyou to treatxecutable statements as data, y@yrobably
wondering wly aryone would ever want to do this.There are, hoever, some ery good reasons foramting
to treat statements as data ardogite them on demand. If yoe'familiar with the C/C++ programming
language, consider the C/C++ "?" operator:

expr ? Texpr: Fexpr

For those who are unfamiliar with the "?" operator, it evaluates the first expresgignafid then returns
the value ofTexpr if expr is true, it evaluates and returexpr if expr evaluates false. Note that this code
does not evaluatexpr if expris true; likewise, it does not evaludxpr if expris false. Contrast this with
the following C/C++ function:

int ifexpr( int x, int t, int f)
{

if( x) return t;

return f;

A function call of the form “ifgpr( expr, Texpr, Fexpr);" is not semantically equalent to
"expr ? Texpr : Fexpr". Theifexpr call aways &aluates all three parameters while the conditiorpies
sion operator ("?") does not. If eithExpr or Fexpr produces a side4efct, then the call tdexpr may pre
duce a diferent result than the conditional operatae.g.,
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i

(x==y) ? a++ . b--;
i fexpr( x==y, c++, d-- );

In this ekample either is incremented do is decremented ub not both because the conditional opera
tor only evaluates one of the twexpressions based on thalwes ofx andy. In the second statementwio
ever, the code both incrementsand decrementd because C/C++ ahys @aluates all &lue parameters
before calling the function; that is, C/C++ eagexlgleates function parametetpeessions (while the cen
ditional operator uses deferrecakiation).

Supposing that we anted to defer thexecution of the statements "c++" and "d--" until inside the func
tion’s body this presents a classic case whereadtil be nice to treat a pair of statements i&s$ lass
objects. Rather than pass theue of "c++" or "d--" to the function, we pass the actual statements and
expand these statements inside the function wieetbe format parameter occuk&hile this is not possible
in C/C++, it is possible in certain languages that support the use of statemerstsciast objects. Natu
rally, if it can be done in anparticular language, then it can be done in assembly language.

Of course, at the machine codedea statement sequence is really nothing more than a sequence of
bytes. Therefore, we could treat those statements as data by directly manipulating the object code associated
with that statement sequence. Indeed, in some cases this is the best solutiever, iitomost cases it will
prove too cumbersome to manipulate a statement sequence by directly manipulating its objécbetide.
solution is to use a pointer to the statement sequence and CALL that sequence indirectigrwviemant
to execute it. Using a pointer in this manner is usuatynfiore dfcient that manipulating the code diregtly
especially since you rarely change the instruction sequence Adgfbu really want to do is defer thexe-
cution of that code. Of course, to properly return from such a sequence, the sequence must end with a RET
instruction. Consider the folldng HLA implementation of the "ifgor" function gien earlier:

procedure ifexpr( expr:boolean; trueStnts:dword; falseStnts:dword );
returns( "eax" );

begi n i fexpr;
if( expr ) then
call ( trueStnts );
el se
call ( falseStnts );
endif;
end ifexpr;
jnp overStntl;
stm1l: nmov( ¢, eax );
inc( ¢c);
ret();
over St nt 1:
jnp overStnt2
stm?2: nmov( d, eax );
dec( d);
ret();

over St nt 2:
ifexpr( exprVval, &tnml, &tnm2);

(for reasons yoll’see shortly, this code assumes thatcthedd variables are global, static, objects.)
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Notice hav the code abee passes the addresses ofdtmetlandstmt2labels to thefexpr procedure.
Also note hav the code sequence alegumps @er the statement sequences so that the code xedytes
them in the body of thiéexpr procedure.

As you can see, thex@mple abwe creates tev mini-procedures in the main body of the coddthin
theifexpr procedure the program calls one of these mini-procedstr@s10r stmt). Unlike standard HLA
procedures, these mini-procedures do not set up a propextiactirecord. There are no parameters, there
are no local ariables, and the code in these mini-procedures doesxectte the standard entry ofite
sequence. lreft, the only part of the aetition record present in this case is the return address.

Because these mini-procedures do not manipulatesE@Rie, EBP is still pointing at the agtion
record for thafexpr procedure. &t this reason, the andd variables must be global, static objects; you
must not declare them inVAR section. Br if you do, the mini-procedures will attempt to access these
objects inifexpr’s activation record, not and the calle@ctvation record.This, of course, wuld return the
wrong \alue.

Fortunately there is a wy around this problem. HLA pramles a special data type, kmo as a thunk,
that eliminates this problenTo learn about thunksekp reading...

1.3 Thunks

A thunkis an object with tw components: a pointer containing the address of some code and a pointer
to an e&ecution emironment (e.g., an a#ttion record). Thunks, therefore, are an eight-byte (64-bit) data
type, though (unlik a qvord) the tvo pieces of a thunk are independeYmu can declare thunkaviables in
an HLA program, assign one thunk to anatipaiss thunks as parameters, return them as function results,
and, in general, do just aboutyéimng that is possible with a 64-bit data type containing deuble veord
pointers.

To declare a thunk in HLA you use ttieinkdata type, e.g.,

static
nyThunk: t hunk;

Like other 64-bit data types HLA does not provide a mechanism for initializing thunks you declare in a static
section. However, you’'ll soon see that it is easy to initialize a thunk within the body of your procedures.

A thunkvariable holds tw pointers. The frst pointey in the L.O. double wrd of the thunk, points at
some gecution exmironment, that is, an agtition record.The second pointein the H.O. double ard of
the thunk, points at the code txeeute for the thunk.

To "call" a thunk, you simply apply the "()" $ixf to the thunks name. Br example, the follaing
“calls" myThunkin the procedure where yae' declarednyThunk

nyThunk();

Thunks nger have parameters, so the parameter list must be empty.

A thunk invocation is a bit more involved than a simple procedure call. First of all, a thunk invocation
will modify the value in EBP (the pointer to the current procedure’s activation record), so the thunk invoca-
tion must begin by preserving EBP’s value on the stack. Next, the thunk invocation must load EBP with the
address of the thunk’s execution environment; that is, the code must load the L.O. double word of the thunk
value into EBP. Next, the thunk must call the code at the address specified by the H.O. double word of the
thunk variable. Finally, upon returning from this code, the thunk invocation must restore the original activa-
tion record pointer from the stack. Here’s the exact sequence HLA emits to a statement like "myThunk();":

push( (type dword nyThunk) ); /1 Pass execution environnent as parm
call ( (type dword nyThunk[4]) ); // Call the thunk

The body of a thunk, that is, the code at the address found in the H.O. doublef the thunk ariable,
is not a standard HLA procedure. In particuldre body of a thunk does noteeute the standard entry or
exit sequences for a standard procedurke calling code passes the pointer to tkecetion emironment
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(i.e., an actiation record) on the stack.. Itis the thukesponsibility to presesvthe currentaiue of EBP
and load EBP with thisalue appearing on the staclafter the thunk loads EBP appropriateiycan ee-
cute the statements in the body of the thunk, after which it must restore &igfhal \alue.

Because a thunkaviable contains a pointer to an aation record to use during th&eeution of the
thunk’s code, it is perfectly reasonable to access lomahbies and other local objects in the \ation
record actie when you defie the thunils body Consider the folling code:

procedur e SoneProc;

var
c: int32;
d: int32;
t: thunk;

begi n SoneProc;

nov( ebp, (type dword t));

mov( & hunkl, (type dword t[4]));

jnp Over Thunk1;

t hunk1:

push( EBP ); /'l Preserve old EBP val ue.
nov( [esp+8], ebp ); // Get pointer to original thunk environment.
nov( d, eax );
add( c, eax );

pop( ebp ); /1 Restore caller’s environnent.
ret( 4); /! Renove EBP val ue passed as paraneter.
Over Thunk1:

t(); // Conputes the sumof ¢ and d into EAX

This exkample initializes thé variable with the &lue ofSomePoc’s actvation record pointer (EBP) and
the address of the code sequence starting at tlabekl At some later point in the code the program
invokes the thunk which lgéns by pushing the pointer 8mePoc’s activation record.Then the thunkye-
cutes the PUSH/M@MOV/ADD/POP/RET sequence starting at addrégssmkl Since this code loads
EBP with the address of the aetiion record containing andd, this code sequence properly adds these
variables together and less their sum in EAX. Perhaps thisaenple is not particularlyxeiting since the
invocation oft occurs while EBP is still pointing &omePoc’s activation record. Haever, you'll soon see
that this isnt always the case.

1.4

Initializing Thunks

In the preious section you sa how to manually initialize a thunkariable with the erironment
pointer and the address of an in-line code sequevtgle this is a perfectly timate way to initialize a
thunk ariable, HLA preides an easier solution: thiélUNK statement.

The HLATHUNK statement uses the folling syntax:
thunk thunkVar := #{ code sequence }#;

thunk\ar is the name of a thunk variable acmtle_sequends a sequence of HLA statements (note that the
sequence does not need to contain the thunk entry and exit sequences. Specifically, it doesn’'t need the
"push(ebp);" and "mov( [esp+8]);" instructions at the beginning of the code, nor does it need to end with the
"pop( ebp);" and "ret(4);" instructions. HLA will automatically supply the thunk’s entry and exit sequences.

Here’s the example from the previous section rewritten to use the THUNK statement:

procedur e SoneProc;
var

c: int32;

d: int32
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t: thunk;
begi n SoneProc

thunk t :=
#
nov( d, eax );
add( c, eax );
H

t(); // Conputes the sumof ¢ and d into EAX

Note hav much clearer and easier to read this code sequence becomes when using the THUNK statement.
You don’t have to stick in statements to initializgou don’t have to jump over the thunk body, you don'’t

have to include the thunk entry/exit sequences, and you don’t wind up with a bunch of statement labels in the
code. Of course, HLA emits the same code sequence as found in the previous section, but this form is much
easier to read and work with.

15

Manipulating Thunks

Since a thunk is a 64-biaiable, you can do gthing with a thunk that you can do, in general, with an
other gword data object.You can assign one thunk to anottempare thunks, pass thunks a parameters,
return thunks as function results, and so dhat is to saythunks are fst class objects. Since a thunk is a
representation of a sequence of statements, those statemerfscavelgffirst class objects. In this section
we'll explore the arious vays we can manipulate thunks and the statements associated with them.

151

Assigning Thunks

To assign one thunk to another you simplywmthe tvo double verds from the source thunk to the des
tination thunk.After the assignment, both thunks specify the same sequence of statements and the same e
cution ewironment; that is, the thunks arewaliases of one anotheihe order of assignment (H.O.
double vord first or L.O. double wrd first) is irrelvant as long as you assign both doubtgds before
using the thunis value. By cowmention, most programmers assign the L.O. douldedviirst. Heres an
example of a thunk assignment:

nov( (type dword srcThunk), eax );
nov( eax, (type dword dest Thunk));
nov( (type dword srcThunk[4]), eax );
mov( eax, (type dword dest Thunk[4]));

If you find yourself assigning one thunk to another orgaleg basis, you might consider using a macro
to accomplish this task:

#macro movThunk( src, dest );
nov( (type dword src), eax )
mov( eax, (type dword dest));

nmov( (type dword src[4]), eax );
nov( eax, (type dword dest[4]));

#endnacr o;

If the fact that this macro’s side effect of disturbing the value in EAX is a concern to you, you can always
copy the data using a PUSH/POP sequence (e.g., the HLA extended syntax MOV instruction):
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#macro movThunk( src, dest );

nov( (type dword src), (type dword dest));
nmov( (type dword src[4]), (type dword dest[4]));

#endnacr o;

If you dont plan on &ecuting ag floating point code in the near future, or yeualready using the
MMX instruction set, you can also use the MMX MQ instruction to cop these 64 bits with only tw
instructions:

novg( src, mmO );
nmovg( nmO, dest );

Don't forget, however, to execute the EMMS instruction before calling any routines that might use the FPU
after this sequence.

1.5.2

Comparing Thunks

You can compare twvthunks for equality or inequality using the standard 64-bit comparisons (see
“Extended Precision Comparisdms page857). If two thunks are equal then theefer to the same code
sequence with the samreeution emironment; if thg are not equal, then theould hae different code
sequences or dérent execution emironments (or both) associated with them. Note that it dbesaie ary
sense to compare one thunlaiggt another for less than or greater thaney're either equal or not equal.

Of course, i8 quite easy to lva two thunks with the same d¥rmonment pointer and dérent code
pointers. This occurs when you initialize twthunk \ariables with separate code sequences in the same pro
cedure, e.g.,

thunk t1 :=
#
nov( 0, eax );
nov( i, ebx );
R
thunk t2 :=
#
nov( 4, eax );
nov( j, ebx );
R

/1 At this point, t1 and t2 will have the same environnment pointer
/1 (EBP s value) but they will have different code pointers.

Note that it is quite possible for dathunks to refer to the same statement sequence wedif@erent
execution emironments. This can occur when you V& a recursie function that initializes a pair of thunk
variables with the same instruction sequence dardifit recursie calls of the function. Since each recur
sive invocation of the function will ha its avn actvation record, the eironment pointers for the v
thunks will be diferent @en though the pointers to the code sequence are the samevekldf the code
that initializes a specdithunk is not recurgg, you can sometimes comparetthiunks by simply compar
ing their code pointers (the H.O. doublerds of the thunks) if yote careful about mer using thunks once
their execution emironment goesway (i.e., the procedure in which you originally assigned the thahiev
returns to its caller).
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1.5.3 Passing Thunks as Parameters

Since the thunk data type idegftively equvalent to a qwrd type, there is little you can do with a
gword object that you canalso do with a thunk object. In particylaince you can pass quads as parame
ters you can certainly pass thunks as parameters to procedures.

To pass a thunk byalue to a procedure igry easysimply declare a formal parameter using the thunk
data type:

procedure HasThunkParn{ t:thunk );
var

i integer;
begi n HasThunkPar m

mv( 1, i );
t(); /1 Invoke the thunk passed as a paraneter.
mov( i, eax ); /1 Note that t does not affect our environnent.

end HasThunkPar m

thunk thunkParm: =
#
mov( O, i ); // Not the same "i" as in HasThunkPar ni
R

HasThunkPar n{ t hunkParm);

Although a thunk is a pointer (a pair of pointers, actually), you can still pass thun&kiby Rssing a
thunk by \alue passes thales of those tavpointer objects to the procedurEhe fact that thesealues are
the addresses of something else is novagle youte passing the data byplue.

HLA automatically pushes thealue of a thunk on the stack when passing a thunkahyev Since
thunks are 64-bit objects, you can only pass them on the stack, you cannot pass thejistera Yéhen
HLA passes a thunk, it pushes the H.O. doulbedwthe code pointer) of the thunksti followed by the
L.O. double vord (the emironment pointer).This way, the two pointers are situated on the stack in the same
order thg normally appear in memory (thewdronment pointer at the \eest address and the code pointer at
the highest address).

If you decide to manually pass a thunk on the stack yourself, you must pusio tieesg of the thunk
on the stack in the same order as HLA, i.e., you must push the H.O. dawbdlérst and the L.O. double
word second. Herg'the call tdHasThunkBrm using manual parameter passing:

push( (type dword thunkParnf4]) );
push( (type dword thunkParmn );
cal | HasThunkPar m

You can also pass thunks by reference to a procedure using the standard pass by reference syntax.
Here’s a typical procedure prototype with a pass by reference thunk parameter:

procedure ref ThunkParn{ var t:thunk ); forward;

When you pass a thunk by reference, y@wassing a pointer to the thunk itself, not the pointers to the
thunk’s execution emironment or code sequencé&o invoke such a thunk you must manually dereference
the pointer to the thunk, push the pointer to the trauad€écution emironment, and indirectly call the code
sequence. Hergan @ample implementation of threfThunkRrm prototype abee:

1. Technically, you could pass a thunk in two 32-bit registers. However, you will have to do this manually; HLA will not
automatically move the two pointers into two separate registers for you.
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procedure ref ThunkParn{ var t:thunk );
begi n ref ThunkPar m

push( eax );

nov( t, eax ); /1 Get pointer to thunk object.
push( [eax] ); /1 Push pointer to thunk’s environment.
call ( (type dword [eax+4]) ); // Call the code sequence.

pop( eax );
end ref ThunkPar m

Of course, one of the main reasons for passing an object by reference is so you can aksgn the
actual parameteralue. Rssing a thunk by reference yiaes this same capability — you can assignva ne
code sequence address ardcaition emironment pointer to a thunk when you pass it by referencev- Ho
ever, aways be careful when assigninglwes to thunk reference parameters within a procedure that you
specify an recution emironment that will still be &lid when the code actuallyviokes the thunk.We'll
explore this ery problem in a later section of this chapter (gedivation Record Lifetimes anthunks on
pagel288.

Although we haen't yet corered this, HLA does supportvagal other parameter passing mechanisms
beyond pass byalue and pass by referencéou can certainly pass thunks using these other mechanisms.
Indeed, thunks are the basis folotef HLA's parameter passing mechanisms: pass by name and pass by
evaluation. Havever, this is getting a little ahead of oursedy well return to this subject in a later chapter
in this wolume.

154

Returning Thunks as Function Results

Like ary other fist class data object, we can also return thunks as the result of some fuhle&@nly
complication is thedct that a thunk is a 64-bit object and we normally return function results gistere
To return a full thunk as a function result, veeoing to need to use dwegisters or a memory location to
hold the result.

To return a 64-bit (nondlting point) alue from a function there are about three or foderiht loca
tions where we can return thalwve: in a rgister pair in an MMX reagister on the stack, or in a memory
location. We'll immediately discount the use of the MMXgisters since their use is not general (i.e., you
cant use them simultaneously witloditing point operations)A global memory location is another possible
location for a function return resulttsthe use of globalariables has some well-kwa defciencies, espe
cially in a multi-threaded/multi-tasking @nonment. Therefore, wdl avoid this solution as well.That
leaves using a igister pair or using the stack to return a thunk as a function result. Both of these schemes
have their adantages and disadntages, wdl’ discuss these twschemes in this section.

Returning thunk function results ingisters is probably the most a@mient vay to return the function
result. The big dravback is obious — it tales two registers to return a 64-bit thunkue. By comention,
most programmers return 64-bélues in the EDX:EAX rgister pair Since this corention is ery popular
we will adopt it in this section. é&ep in mind, haever, that you may use almostyaregister pair you lik to
return this 64-bit alue (though ESP and EBP are probabfyliofits).

When using EDX:EAX, EAX should contain the pointer to tkecaition esironment and EDX should
contain the pointer to the code sequence. Upon return from the function, you should storeothegs tw
ters into an appropriate thunknable for future use.

To return a thunk on the stack, you must enatxom on the stack for the 64-bit thurddue prior to
pushing ag of the functions parameters onto the stadkhen, just before the function returns, you store the
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thunk result into these locations on the statihen the function returns it cleans up the parameters it
pushed on the stackibit does not free up the thunk objethis leares the 64-bit thunkalue sitting on the
top of the stack after the function returns.

The folloving code manually creates and degtrthe functiors actvation record so that it can specify
the thunk result as theadt two parameters of the functieparameter list:

procedure R nThunkResul t

(
ThunkCode: dwor d; /1 HQ dword of return result goes here.
ThunkEnv: dwor d; /1 L.Q dword of return result goes here.
sel ection: bool ean; // First actual paraneter.
t True: thunk; /! Return this thunk if selection is true.
t Fal se: t hunk /! Return this thunk if selection is false.

); @odi spl ay; @ofrane;
begi n R nThunkResul t;

push( ebp ); /1 Set up the activation record.
mov( esp, ebp );
push( eax );

if( selection ) then

nov( (type dword tTrue), eax );
nov( eax, ThunkEnv );

nov( (type dword tTrue[4]), eax );
nov( eax, ThunkCode );

el se

nov( (type dword tFalse), eax );
nov( eax, ThunkEnv );

nov( (type dword tFal se[4]), eax );
mov( eax, ThunkCode );

endi f;

/1 Oean up the activation record, but |eave the eight
/1 bytes of the thunk return result on the stack when this
/1 function returns.

pop( eax );
pop( ebp );
ret( _parms_ - 8); /] _parns_is total # of bytes of parameters (28).

end R nThunkResul t;

/1 Exanple of call to RnThunkResult and storage of return result.
/1 (Note passing zeros as the thunk val ues to reserve storage for the
// thunk return result on the stack):

Rt nThunkResul t ( 0, 0, Choose(ne, t1, t2);
pop( (type dword SoneThunkVar) );
pop( (type dword SoneThunkVar[4]) );

If you prefer not to list the thunk parameter as a couple of pseudo-parameters in the fupataone

ter list, you can alays manually allocate storage for the parameters prior to the call and refer to them using
the "[ESP+disp]" or "[EBP+disp]" addressing mode within the funcsibiody
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1.6

Activation Record Lifetimes and Thunks

There is a problem that can occur when using thunks in your applicatismgiit€ possible to woke a
thunk long after the associatexkeution emironment (actiation record) is no longeralid. Consider the
following HLA code that demonstrates this problem:

static
BadThunk: t hunk;

procedure procl;
var

i:int32;
begi n procl;

thunk BadThunk : =
#
stdout.put( "i =", i, nl );
#},
mov( 25, i );

end procl;

procedure proc2;
var

jint32;
begi n proc2;

nmov( 123, j );
BadThunk() ;

end proc2;

If the main program in this code fragment caliscland then immediately calfgoc2, this code will prob
ably print "i = 123" although there is no guarantee this will happen (the actual result depends on a couple of
factors, although "i = 123" is the most likely output ).

The problem with this code example is thadclinitializesBadThunkwith the address of axecution
ervironment that is no longer V&" when the program actuallyecutes the thun&’codeTheproclproce
dure constructs itswn actvation record and initializes theablei in this actvation record with theatue
25. This procedure also initialize8adThunkwith the address of the code sequence containingtthe
out.putstatement and it initializeBadThunks execution emironment pointer with the address mbcl’s
activation record. Thenprocl returns to its caller Unfortunately upon returning to its call@rocl also
obliterates its actation record een thoughBadThunkstill contains a pointer into this area of memory
Later, when the main program capigoc2, proc2 builds its avn actvation record (most li&ly over the top of
procl’s old actvation record). When proc2 invokes BadThunk BadThunkuses the original pointer to
procl’s activation record (which is mainvalid and probably points @roc2’s activation record) from which
to fetchi’svalue. If nothing etra was pushed or popped betweenpleclinvocation and theroc2invoca
tion, thenj’s value inproc2is probably at the same memory location a&s inprocl’sinvocation. Hence,
thestdout.putstatement in the thurdccode will pring’s value.

This rather twial example demonstrates an important point about using thunks — you nagsal
ensure that a thurdexecution emironment is still alid wheneer you irvoke a thunk. In particulaif you
use HLAs THUNK statement to automatically initialize a thunkriable with the address of a code
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sequence and theiecution emironment of the current procedure, you must neblke that thunk once the
procedure returns to its caller; for at that point the trauedécution emironment pointer will not bealid.

This discussion does not suggest that you can only use a thunk within the procedure in which you assign
a \alue to that thunkYou may continue to iroke a thunk, een from outside the procedure whosevatibn
record the thunk references, until that procedure returns to its c8lteif that procedure calls some other
procedure (oreen itself, recursiely) then it is lgal to call the thunk associated with that procedure.

1.7

Comparing Thunks and Objects

Thunks are gry similar to objects insaf as you can easily implement an abstract data type with a
thunk. Remembern abstract data type is a piece of data and the operation(s) on that data. In the case of a
thunk, the gecution emironment pointer can point at the data while the code address can point at the code
that operates on the data. Since you can also use objects to implement abstract data types, armaeright w
how objects and thunks compare to one another

Thunks are sonw¢hat less "structured" than objectn object contains a set of datalwes and opera
tions (methods) on those datalues. You cannot change the datalues an object operates upon without
fundamentally changing the object (i.e., selecting f@miht object in memory). It is possible waver, to
change thexecution emironment pointer in a thunk andveethat thunk operate on fundamentallyetiént
data. Although such a course of action is fraught witHidifity and \ery errofprone, there are some times
when changing thexecution emironment pointer of a thunk will produce some interesting resukiss text
will leave it up to you to disa@r hav you could abse thunks in thisashion.

1.8

An Example of a Thunk Using the Fibonacci Function

By now, you're probably thinking "thunks may be interestingt What good are tly&" The code asso
ciated with creating andvnking thunks is not spectacularlyfiefent (compared, sato a straight procedure
call). Surely using thunks mustgatively impact the xecution time of your code, eh®/ll, like so man
other programming constructs, the misuse angalof thunks can ke a ngative impact on thexacution
time of your programs. Hweever, in an appropriate situation thunks can dramatically ingtbe perfor
mance of your programs. In this section lWwexplore one situation where the use of thunks produces an
amazing performance boost: the calculation of a Fibonacci number

Earlier in this ta&t there vas an rample of a Fibonacci number generation program ‘(Eésnacci
Number Generatidron pageb0). As you may recall, the Fibonacci functioh(fi) is defined recursiely for
n>= 1 as follavs:

fib(1) = 1;
fib(2) = 1;
fib( n) =fib( n-1) + fib( n-2)

One problem with this recux& defnition for fib is that it is &tremely ineficient to compute.The
number of clock ycles this particular implementation requiresteaute is somexponential &ctor ofn.
Effectively, asn increases by one this algorithm ¢éakwice as long taxecute.

The big problem with this recuva defhition is that it computes the samalwes wer and oer agin.
Consider the statementb{in ) = fbo(n-1) + fb( n-2)". Note that the computation di(fa-1) also computes
fib(n-2) (since fi(n-1) = fb(n-2) + fb(n-3) for all n >=4). Although the computation oftfin-1) computes
the \alue of fb(n-2) as part of its calculation, this simple reagsiefnition doesnt save that result, so it
must recomputebi(n-2) upon returning fromd{n-1) in order to complete the calculation of(fi).

Since the calculation of Fib(n-1) generally computes Fib(n-2) as well, whadd e nice is to he this
function return both results simultaneously; that is, not only should Fib(n-1) return the Fibonacci number
for n-1, it should also return the Fibonacci number for n-2 as well. Inxampm@e, we will use a thunk to
store the result of Fib(n-2) into a locariable in the Fibonacci function.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel289



Chapter One Volume Five

Activation Record for Fib(n)

b- n2 variab¢

When Fib(n-1) computes
Fib(n-2) as part of its |
calculation, it calls a thun 1 o ) |
to store Fib(n-2) into the 1 Activation Record for Fib(nL !

n2 variable of Fib(n)‘s

activation record. )

Figure 1.1 Using a Thunk to Set the Fib(n-2) Value in a Different Activation Record

The following program preides two versions of the Fibonacci function: one that uses thunks to pass the
Fib(n-2) \alue back to a pwous invocation of the functionAnother \ersion of this function computes the
Fibonacci number using the traditional recuesiefnition. The program computes the running time of both
implementations and displays the resultgthout further ado, herg'the code:

program fi bThunk
#include( "stdlib.hhf" )

/'l Fibonacci function using a thunk to cal cul ate fib(n-2)
// without naking a recursive call

procedure fib( n:uns32; nn2:thunk ); nodisplay; returns( "eax" );

var
n2: uns32; /1 Arecursive call to fib stores fib(n-2) here.
t: thunk; /1 This thunk actually stores fib(n-2) in n2
begin fib;

/1l Special case for n =1, 2. Just return 1 as the
// function result and store 1 into the fib(n-2) result.

if( n<=2) then

mov( 1, eax ); // Return as n-1 val ue
nn2(); // Store into caller as n-2 val ue

el se

/] Oeate a thunk that will store the fib(n-2) val ue
/1 into our local n2 variable.

thunk t :=
#
nmov( eax, n2 );
H
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nmov( n, eax );

dec( eax );

fib( eax, t ); // Conpute fib(n-1).

/1 Pass back fib(n-1) as the fib(n-2) value to a previous caller.

nn2() ;

/1l Conpute fib(n) = fib(n-1) [in eax] + fib(n-2) [in n2]:
add( n2, eax );
endi f;

end fib;

/1 Standard fibonacci function using the slow recursive inplenentation.

procedure slowfib( n:uns32 ); nodisplay; returns( "eax" );
begi n sl owfi b;

I/l For n=1,2 just return 1.
if( n<=2) then

mov( 1, eax );
el se

/1 Return slowfib(n-1) + slowfib(n-2) as the function result:

dec( n);
slowfib( n); /1 conpute fib(n-1)
push( eax ); I/ Save fib(n-1);
dec( n); /1 conpute fib(n-2);
slowfib( n);
add( [esp], eax ); [/ Conpute fib(n-1) [on stack] + fib(n-2) [in eax].
add( 4, esp); /1 Renove ol d val ue from stack.
endi f;
end sl owfi b;
var
prevTi ne: dwor d[ 2] ; /1 Used to hold 64-bit result fromRDISC instr.
gw. qgword; // Used to conpute difference in timng.
dummy: t hunk; // Used in original calls to fib.

begi n fi bThunk;
/1 "Do nothing" thunk used by the initial call to fib.
/1 This thunk sinply returns to its caller wthout doing

[/ anyt hi ng.

thunk dummy := #{ }#;
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/1 Call the fibonacci routines to "prime" the cache:

fib( 1, dummy );
slowfib( 1);

/1 Ckay, conpute the times for the two fibonacci routines for
/1 values of n froml to 32:

for( nmov( 1, ebx ); ebx < 32; inc( ebx )) do

/!l Read the tine stanp counter before calling fib:
rdtsc();

nmov( eax, prevTine );

nmov( edx, prevTime[4] );

fib( ebx, dumy );
nmov( eax, €ecx );

/1 Read the timestanp counter and conpute the approxinate running
/1l tinme of the current call to fib:

rdtsc();

sub( prevTinme, eax );

sbb( prevTinme[4], edx );

nmov( eax, (type dword qw));
mov( edx, (type dword qw4]));

/1 Dsplay the results and timng fromthe call to fib:

st dout . put
(
"“n='
(type uns32 ebx): 2,
" fib(n) =",
(type uns32 ecx):7,
"otime="
)
stdout. put uédsize( gqw, 5, ' ' );

/1 Ckay, repeat the above for the slowfib inplenentation:

rdtsc();
nov( eax, prevTine );
mov( edx, prevTine[4] );

slowfib( ebx );

nov( eax, ecx );

rdtsc();

sub( prevTime, eax );

sbb( prevTine[4], edx );

nov( eax, (type dword qw));

nov( edx, (type dword qw4]));

stdout.put( " slowfib(n) =", (type uns32 ecx ):7, "
stdout. putu6dsi ze( qw, 8, ' ' );

st dout . new n();

time =" );

endfor;
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end fi bThunk;

Program 1.1 Fibonacci Number Generation Using Thunks

This (relatvely) simple modiftation to the Fibonacci function produces a dramatiferdifice in the
run-time of the codeThe run-time of the thunk implementation issnavell within reason.The following
table lists the same run-times of th@tiunctions (thunk implementation vs. standard regarisnplementa
tion). As you can see, this small change to the program has madsg signifcant diference.

Table 1. Running Time of the FIB and SlowFib Functions

Fib ExecutionTime | SlowFib Execution
n (Thunk Time (Recursie
Implementatior)y | Implementation)

1 60 97

2 152 100

3 226 166

4 270 197

5 302 286

6 334 414

7 369 594

8 397 948

9 432 1513

10 473 2421

11 431 3719

12 430 6010

13 467 9763

14 494 15758

15 535 25522

16 564 41288

17 614 66822

18 660 108099

19 745 174920
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Table 1: Running Time of the FIB and SlowFib Functions

Fib ExecutionTime | SlowFib Execution
n (Thunk Time (Recursie
Implementatiorf) Implementation)
20 735 283001
21 791 457918
22 886 740894
23 943 1198802
24 919 1941077
25 966 3138466
26 1015 5094734
27 1094 8217396
28 1101 13297000
29 1158 21592819
30 3576 34927400
31 1315 56370705

a. All times are in CPU cycles as measured via RDTSC on a Pentium I
processor.
b. This value was not recorded properly because of OS overhead.

Note that a thunk implementation of the Fibonacci function is not the aniytevimprae the perfor
mance of this function. One couldvegust as easily (more easily fact) passed the address of the loal
variable by reference and had the reagrsiall store the Fib(n-2)alue directly into th@2 variable. ©r that
matter one could hee written an interacte (rather than recuka) solution to this problem that computes
the Fibonacci numberevy eficiently. However, alternate solutions to Fibonacci aside, thxianeple does
clearly demonstrate that the use of a thunk in certain situations can dramaticalleitmgrperformance of
an algorithm.

1.9

Thunks and Atrtificial Intelligence Code

Although the use of thunks to compute the Fibonacci number in thimysesection produced a dra
matic performance boost, thunks clearly were not necessary for this operation (indeed, noy toeaplen
really need to compute Fibonacci numbers, for that ma#though this @ample demonstrates that thunks
can impree performance inarious situations, it does not demonstrate the need for thiviles. all, there
are @en more dfcient implementations of the Fibonacci function (though nothing quite so dramatic as the
difference between Fib and ®&iBib, which went from xponential to linear»®ecution time) that do not
involve the use of thunks. So although the use of thunks can increase the performance of the Fibenacci func
tion (over the gecution time of the standard recuesimplementation), thexample in the prdous section
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does not demonstrate the need for thunks since there are better implementations of the Fibonacci function
that do not use thunks. In this section we wifilere some types of calculations for which thunks present a
very good, if not the best, solution.

In the field ofArtifi cial Intelligence (Al from this point forard) researchers commonly use interpreted
programming languages such as LISP or Prolog to impleraeioue algorithmsAlthough you could write
anAl program in just about grlanguage, these interpreted languagesLilSP and Prolog lva a couple of
benefis that help mak writing Al programs much less dii€ult. Among a long list of other features,dw
important features stand out: (1) statements in these languagestatads objects, (2) these languages can
defer the ealuation of function parameters until the parameteakies are actually needed (lazaleia
tion). Since thunks puide exactly these tw features in an HLA program, it should come as no surprise
that you can use thunks to implemeatigusAl algorithm in assembly language.

Before going too muchafther you should realize thal programs usually tak adwantage of man
other features in LISP and Prolog besides tlenated abee. Automatic dynamic memory allocation and
garbage collection are twbig features that mgi\l programs use, fonr@mple. Also, the run-time interpre
tation of language statements is another big feature (i.e., the user of a program can input a string containing
a LISP or Prolog statement and the program caige this string as part of the programjthough it is
certainly possible to achie all this in an assembly language program, such supgtirinbo languages li&
LISP and Prolog may require (lots of) additional coding in assembly language. So pleasd@othis
section to twialize the efort needed to writél programs in assembly language; writing (goAd)ro-
grams is dificult and tools lik LISP and Prolog can reduce thdbef

Of course, a major problem with languages LKSP and Prolog is that programs written in these (inter
preted) languages tend to ruary slav. Some people maygue that there isha suficient diference in
performance between programs written in C/C++ and assemblartant the etra efort of writing the
code in assembly; such a claim isfidiflt to male about LISP or Prolog programersus an assembly
equialent. Whereas a well-written assembly program may be only a couple of tistes than a well-writ
ten C/C++ program, a well-written assembly program will probably be tens, if not hundreds or thousands, of
times fster than the equilent LISP or Prolog codelherefore, reorking at least a portion of &l pro-
gram written in one of these interpreted languages can prodeacg big boost in the performance of tile
application.

Traditionally, one of the big problem aredbprogrammers hae had when translating their applications
to a laver-level language has been the issue of "function calls (statements) atafs objects and the need
for lazy evaluation." Traditional third generation programming languages ¢C++ and &scal simply do
not proride thesedcilities. Al applications that makuse of thesatilities in languages l&kLISP or Prolog
often hae to be raritten in order to woid the use of these features in thedelevel languagesAssembly
language doesnsuffer from this problem. Oh, it may be filidult to implement some feature in assembly
language, bt if it can be done, it can be done in assembly language. Sbnewér run into the problem of
assembly language being unable to implement some feature fromPctS®y, or some other language.

Thunks are a greaehicle for deferring thexecution of some code until a later time, (oossibly for-
ever). One application area where deferrgecation is irvaluable is in a gme. Consider a situation in
which the current state of age suggests one ofveeal possible mees a piece could makbased on a
decision made by an aehsary (e.g., a particular chess piece couldemaie of seeral diferent mees
depending on future mes by the other color)You could represent these ves as a list of thunks ange2
cuting the mue by selecting andxecuting one of the thunks from the list at some future ti¥oai could
base the selection of the actual thunkxeceite on adersarial mees that occur at some later time.

Thunks are also useful for passing resultsamious calculations back towezal diferent points in your
code. fer example, in a multi-player stragg game the actities of one player could be broadcast to a list of
interested players by wiag those other players ‘gister" a thunk with the playerThen, wheneer the
player does something of interest to those other players, the program xeeldeethe list of thunks and
pass whateer data is important to those other players via the thunks.
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1.10

Thunks as Triggers

Thunks are also useful &gygers. A trigger is a deice that fies wheneer a certain condition is met.
Probably the most commorxample of a trigger is a database trigger thatcates some code wheee
some condition occurs in the database (e.g., the entry ofaididata or the update of someldi). Trig-
gers are useful insaf as thg allow the use ofleclamtive pogrammingin your assembly code. Declaxati
programming consists of some declarations that automatic&ityee when a certain conditioxigs. Such
declarations do notxecute sequentially or in response to some sort of Thly are simply part of the pro
gramming ewironment and automaticallyxecute wheneer appropriate. At the machine leel, of course,
some sort of call or jump must be made to such a code sequenhatalthigher kel of abstraction the code
seems to "fe" (execute) all on itswn.

To implement declarate programming using triggers you must get in the habit of writing code that
always calls a "trigger routine" (i.e., a thunk) ay @iven point in the code where yowuld want to handle
some gent. By dedult, the trigger code ould be an empty thunk, e.g.:

procedure Defaul t Tri gger Proc; @odi spl ay; @of rane;
begi n Def aul t Tri gger Proc;

/1 Imrediately return to the caller and pop off the environnent
// pointer passed to us (probably a NULL pointer).

ret(4);
end Defaul t Tri gger Proc;

static
Def aul t Tri gger: t hunk: @ost or age;
dword 0, &Defaul tTri gger Proc;

The code abee consists of two parts: a procedure that corresponds to the default thunk code to execute and
a declaration of a default trigger thunk object. The procedure body consists of nothing more than a return
that pops the EBP value the thunk invocation pushes and then returns back to the thunk invocation. The
default trigger thunk variable contains NULL (zero) for the EBP value and the addresDefdhné Trigr

gerProc code as the code pointer. Note that the value we pass as the environment pointer (EBP value) is
irrelevant sincédefaultTriggerProcignores this value.

To use a trigger, you simply declare a thunk variableDikéaultTigger above and initialize it with the
address of th®efaultTiggerProc procedure.You will need a separate thuniriable for each triggewvent
you wish to process; @ver, you will only need one daitilt trigger procedure (you can initialize all trigger
thunks with the address of this same procedure). Genehadbe trigger thunks will be globanables so
you can access the thun&lwes throughout your progranies, using globalariables is often a no-no from
a structured point of we but triggers tend to be global objects thatesal diferent procedures share, so
using global objects is appropriate here. If using globghbles for these thunksfends you, thenury
them in a class and pridle appropriate accessor methods to these thunks.

Once you hee a thunk you ant to use as a triggerou invoke that thunk from the appropriate point in
your code.As a concretexample, suppose you V& a database function that updates a record in the data
base. It is common (in database programs) to triggevem @fter the update and, possjlidgfore the
update. Therefore, a typical database update procedure migbitertwo thunks — one before and one after
the body of the update procedwrebde.The folloving code fragment demonstratesvgou code do this:

static
pr eUpdat e: t hunk: @ost or age;
dword 0, &Defaul tTri gger Proc;
post Updat e: t hunk: @ost or age;

dword 0, &Defaul tTri gger Proc;
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procedur e dat abaseUpdat e( << appropriate paraneters >>);
<< decl arations >>
begi n dat abaseUpdat e;

preUpdat e() ; /1l Trigger the pre-update event.
<< Body of update procedure >>
post Update(); // Trigger the post-update event.

end dat abaseUpdat €;

As written, of course, these triggers damd much. They call the dedult trigger procedure that imme
diately returns.Thus fr, the triggers are really nothing more thanast® of time and space in the program.
However, since thepreUpdateand postUpdatehunks are &riables, we can change thealwes under pro
gram control and redirect the triggereats to diferent code.

When changing a trigger\alue, its usually a good idea tadt preserg the &isting thunk dataThere
isn't ary guarantee that the thunk points at theadkftrigger procedureTherefore, you should ga the
value so you can restore it when yeudone handling the triggevent (assuming you are writing aveat
handler that shuts dm before the program terminates). If y@usetting and restoring a triggealwe in a
procedure, you can cgphe global thunis value into a local ariable prior to setting the thunk and you can
restore the thunk from this locahwable prior to returning from the procedure:

procedur e DenoRest oreTri gger;
var

RestoreTrigger: dword[2];
begi n DenoRest or eTri gger;

/1 The following three statements "register” a thunk as the
/1 "d obal Event" trigger:

mov( (type dword Q obal Event[0]), RestoreTrigger[0] );
mov( (type dword d obal Event[4]), RestoreTrigger[4] );
thunk Q obal Event : = #{ <<thunk body >> }#;

<< Body of DenoRestoreTrigger procedure >>
// Restore the original thunk as the trigger event:

nov( RestoreTrigger[0], (type dword d obal Event[0]) );
nov( RestoreTrigger[4], (type dword d obal Event[4]) )

1

end DenoRestoreTri gger;

Note that this code avks properly even iDemoRestoreTrigges recursive since thRestoreTriggenari-

able is an automatic variable. You should always use automatic (VAR) objects to hold the saved values since
static objects have only a single instance (which would fail in a multi-threaded environmebDeoraRe
storeTriggeris recursive).

One problem with the code in the example above is that it replaces the current trigger with a new trigger.
While this is sometimes desirable, more often you'll probably wach&in the trigger gents. That is,
rather than hang a trigger call the most recent thunk, which returns to the original code upon completion,
you'll probably want to call the original thunk you replaced before or after the current tkanltes.This
way, if several procedures gister a trigger on the same globaket, thg will all "fire" when the eent
occurs. The folloving code fragment sk the minor modiGiations to the code fragment abmeeded to
pull this of:

procedur e DenoRestoreTri gger;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel297



Chapter One Volume Five

var
PrevTrigger: thunk;
begi n DenoRest or eTri gger;

/1 The following three statements "register” a thunk as the
/1 "d obal Event" trigger:

nov( (type dword Q obal Event[0]), (type dword PrevTrigger[0]) );
mov( (type dword G obal Event[4]), (type dword PrevTrigger[4]) );
t hunk Q obal Event : =

#

PrevThunk();
<<t hunk body >>
R

<< Body of DenoRestoreTrigger procedure >>

/!l Restore the original thunk as the trigger event:

nov( (type dword PrevTrigger[0]), (type dword d obal Event[0]) );
nov( (type dword PrevTrigger[4]), (type dword d obal Event[4]) )

end DenoRest oreTri gger;

The principal diferences between thigrsion and the last is thRrevTrigger (a thunk) replaces the
RestoeTrigger (two double verds) \ariable and the thunk codevokes PrevTrigger before &ecuting its
own code. This means that the thuiskbody will executeafter all the preious thunks in the chain. If you
would prefer to gecute the thunks body before all theviwas thunks in the chain, then simplyahke the
thunkafter the thunks body e.qg.,

thunk 4 obal Event : =
#
<<t hunk body >>
PrevThunk();
HE

In practice, most programs set a triggeerg once and let a single, global, trigger handler process
events from that point forard. Havever, if you're writing more sophisticated code that enables and dis
ables trigger eents throughout, you mightamt to write a macro that helps automatergg setting, and
restore thunk objects. Consider the faflog HLA macro:

#macro Event Handl er ( Event, Local Thunk );

mov( (type dword Event[O0]), (type dword Local Thunk[0]) );
nmov( (type dword Event[4]), (type dword Local Thunk[4]) );
thunk Event :=

#t er m nat or EndEvent Handl er;

mov( (type dword Local Thunk[0]), (type dword Event[O]) );
nmov( (type dword Local Thunk[4]), (type dword Event[4]) )

#endnmacr o;

This macro lets you write code éikhe following:

procedur e DenoRestoreTri gger;
var

PrevTrigger: thunk;
begi n DenoRest or eTri gger ;
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Event Handl er ( d obal Event, PrevTrigger ) // Note: no sem col on here!

#
PrevThunk();
<<t hunk body >>
HE

<< Body of DenoRestoreTrigger procedure >>
EndEvent Handl er ;

end DenoRestoreTri gger;

Especially note the comment stating that no semicolonwsltbeEventHandlemacro ivocation. If
you study theeventHandlermacro carefullyyou'll notice that macro ends with thesfi half of aTHUNK
statement.The body of theeventHandlerEndEventHandlestatement (macro wocation) must bgin with
a thunk body declaration that completesThitJNK statement bgun inEventHandler If you put a semico
lon at the end of thEventHandleistatement, this will insert the semicolon into the middle offtHEINK
statement, resulting in a syntax erréfrthese syntactical gymnastics bother you, you caays remwee the
THUNK statement from the macro and require the end user to type th&lfullK statement at the ban-
ning of the macro bodyHowever, sasing this etra type is what macros are all about; most userddv
probably rather deal with remembering not to put a semicolon at the end B¥e¢htHandlerstatement
rather than do thisx&ra typing.

1.11 Jumping Out of a Thunk

Because a thunk is a procedure nested within another proceldady’ there are some interesting situ
ations that can arise during prograre@ution. One such situation is jumping out of a thunk and into the
surrounding code during theexution of that thunk Although it is possible to do this, you musegcise
great caution when doing sdhis section will discuss the precautions you must taken leging a thunk
other than via a RET instruction.

Perhaps the best place to start is with a couplgasfiples that demonstratarious vays to abnormally
exit a thunk. The frst thunk in the xample belar demonstrates a simple JMP instruction while the second
thunk in this @ample demonstrates kgag a thunk via a BREAK statement.

procedur e Exit Thunks;
var

j npFrom t hunk;

br eakFr om t hunk;
begi n Exi t Thunks;

thunk jnpFrom: =

#
// Just junp out of this thunk and back into
/1 the ExitThunks procedure:
j mp XTI abel ;

HE

/1 Execute the thunk above (which winds up junping to the
/1 XTl abel |abel bel ow

j npFrong() ;

XTI abel :
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// Oeate a |loop inside the ExitThunks procedure and
/1 define a thunk within this loop. Use a BREAK statenent
/1 within the thunk to exit the thunk (and | oop).

forever

t hunk breakFrom : =

#
/1l Break out of this thunk and the surroundi ng
/1 1oop via the foll owi ng BREAK st at enent :
br eak;

HE,

/1 1Invoke the thunk (which causes use to exit fromthe
/1 surroundi ng | oop):

br eakFrom() ;
endfor;
end Exit Thunks;

Obviously, you should @oid constructs lik these in your thunksThe control fow in the procedure
above is \ery unusual, to say the least, and others reading this code wvélhdificult time fully compre
hending what is going on. Of coursegligther structured programming techniques thatenpakgrams
easier to read, you may diseo the need to write code dikhis under special circumstances. Justtdon
malke a habit of doing this gratuitously

There is a problem with breaking out of the thunks as @one in the code al® this scheme leas a
bunch of data on the stack (spezafly, the thunks parameterthe return address, and theesh EBP alue
in this particular kample). HadExitThunkspushed some gésters on the stack that it needed to preserv
ESP would not be properly pointing at thos@ister upon reaching the end of the functidiherefore, pop
ping these rgisters of the stack wuld load @rbage into the ggsters. Brtunately the HLA standard»ét
sequence reloads ESP from EBP prior to popping €B&tue and the return addres$ tife stack; this
resynchronizes ESP prior to returning from the procedurevelds, arything you push on the stack after
the standard entry sequence will not be on the top of stack if you prematurely bail out of a thasklasev
in the preious xample.

The only reasonable solution is tovea cop of the stack pointes’value in a local &riable after you
push ag important data on the stackhen restore ESP from this local (automati)iable before attempt
ing to pop aw of that data dfthe stack. The folloving implementation oExitThunksdemonstrates this
principle in action:

procedur e Exit Thunks;

var
j npFrom t hunk;
br eakFr om t hunk;
ESPsave: dwor d;

begi n Exi t Thunks;

push( eax ); /] Registers we w sh to preserve.
push( ebx );

push( ecx );

push( edx );

nov( esp, ESPsave ); // Preserve ESP' s value for return.

thunk j mpFrom : =

#
<< Code, as appropriate, for this thunk >>
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// Just junp out of this thunk and back into
/1 the ExitThunks procedure:

jnp XTIl abel ;
HE

/1 Execute the thunk above (which winds up junping to the
/1 XTIl abel |abel bel ow

j mpFron() ;
XTI abel :
/1 Oreate a | oop inside the ExitThunks procedure and
/1 define a thunk within this |loop. Use a BREAK statenent
/1 within the thunk to exit the thunk (and | oop).
forever
t hunk breakFrom: =
#

<< Code, as appropriate, for this thunk >>

// Break out of this thunk and the surroundi ng
/1 1oop via the fol |l owi ng BREAK st at enent :

br eak;
33

/1 1Invoke the thunk (which causes use to exit fromthe
/1 surroundi ng | oop):

br eakFronm() ;
endf or;
<< Any other code required by the procedure >>

/1 Restore ESP s value from ESPsave in case one of the thunks (or both)
/1 above have prematurely exited, |eaving garbage on the stack.

nov( ESPsave, esp );

// Restore the registers and | eave:

pop( edx );
pop( ecx );
pop( ebx );
pop( eax );

end Exit Thunks;

This scheme will wrk properly because the thunka/ays set up EBP to point BkitThunksactivation
record (this is trueven if the program calls these thunks from some other proceddiesESPsavevari-
able must be an automaticAR) variable if this code is to vk properly in all cases.
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1.12

Handling Exceptions with Thunks

Thunks are also useful for passingeption information back to some code in the calling tree when the
HLA exception handling codeauld be inappropriate (e.g., if you domiant to immediately abort the oper
ation of the current code, you jusémt to pass data back to somevjes code in the current call chain).
Before discussing oto implement somexeeption handler with a thunk, perhaps we should discugs wh
we would want to do this. After all, HLA has an xcellent &ception handling mechanism — the
TRY..ENDTRY and RAISE statements; whnot use those instead of processirgeptions manually with
thunks?There are tw reasons for using thunks to handteeptions — you might ant to bypass the normal
exception handling code (i.e., skiper TRY..ENDTRY blocks for a certainvent and pass control directly
to some fted routine) or you might ant to resumexecution after anxeeption occursWe'll look at these
two mechanisms in this section.

One of the uses for thunks imoeption handling code is to bypass antermediateTRY..ENDTRY
statements between the point of tkeeption and the handler yallike to use for thexeeption. br exam
ple, suppose you kia the follaving call chain in your program:

HasExcept i onHandl er - >MayHave(ne- >MayHaveAnot her - >CausesTheExcept i on

In this sequence the proced@ausesTheExcepti@ncounters somexeeptional condition.Were you
to write the code using the standard RAISE @aRY..ENDTRY statements, then the |aBRY..ENDTRY
statement (that handles the speaifiception) would execute its EXCEPT clause and deal with thisep
tion. In the currentxample, that means thitayHaveOneor MayHaveAnothecould trap and attempt to
handle this eception. Using the standargoeption handling mechanism, it isry difficult to ensure that
HasExceptionHandleis the only procedure that responds to tRisegtion.

One wvay to aoid this problem is to use a thunk to transfer contréldsExceptionHandlerather than
the RAISE statement. By declaring a global thunk and initializing it witaisExceptionHandleto exe-
cute the rception handleryou can bypass giintermediate procedures in the call chain and jump directly to
HasExceptionHandlefrom the ofending code. Dom’forget to sae ESPS value and restore it if you ball
out of the &ception handler code inside the thunk and jump directly intdHdsExceptionHandlecode
(see"Jumping Out of &hunk on pagel299.

Granted, needing to skiver exception handlers is a bit of a synthetic problem that yoo'tvencoun
ter very often in real-life programs. Mever, the second feature raised abpresuming the original code
after handling anx@eption, is something you may need to do from time to time. '$le&eptions do not
allow you to resume the code that raised tkeeption, so if you need this capability thunksyile a good
solution. To resume the interrupted code when using a thunk, all yautbalo is return from the thunk in
the normal &shion. If you dort’'want to resume the original code, then you can jump out of the thunk and
into the surrounding procedure code (ddotget to sae and restore ESP in that surrounding code, see
“Jumping Out of @hunk on pagel299for details). The nice thing about a thunk is that you ddvase to
decide whether yotg going to bail out of the thunk or resume tkecaition of the original code while wit
ing your program.You can write some code within the thunk to m#kis decision at run-time.

1.13

Using Thunks in an Appropriate Manner

This chapter presents all sorts of/abuses for thunksThunks are really neat and yddind all kinds
of great uses for them if you just think about them for a bitweder, it's also easy to get carriediay and
use thunks in an inappropriateshion. Remembgthunks are not only a pointer to a procedwieahpointer
to an eecution emironment as well. In mancircumstances you ddmeed the xecution emironment
pointer (i.e., the pointer to the agttion record). In those cases you should remember that you can use a
simple procedure pointer rather than a thunk to indirectly call the "thunk" @odenple indirect call is a
bit more eficient than a thunk rocation, so unless you really need all the features of the thunk, just use a
procedure pointer instead.

Pagel302 © 2001, By Randall Hyde Version:9/9/02



Thunks

1.14

Putting It All Together

Although thunks are quite useful, you dosee them used in maprograms.There are tw reasons for
this — most high Mel languages dohsupport thunks and, thereforewfprogrammers he suficient expe-
rience using thunks to kmohow to use this appropriatelyMost people learning assembly language, for
example, come from a standard impeamtprogramming language background (C/C+asdal, B\SIC,
FORTRAN, etc.) and ha never seen this type of programming construct befdreose who are used to
programming in languages where thunks amglable (or a similar construct isailable) tend not to be the
ones who learn assembly language.

If you happen to lack the prerequisite Wwiedge of thunks, you should not writef ¢iiis chapter as
unimportant. Thunks are defiitely a programming tool you should beae of, like recursion, that'really
handy in lots of situationsYou should vatch out for situations where thunks are applicable and use them as
appropriate.

We'll see additional uses for thunks in thexinehapter on iterators and in the chapter oraaded
parameter passing techniques, later in thlame.
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