

Thunks

n use to

ard

ks do

p to

r

nge the

f a

 as

as a

n

 of

 on

uence

e

Thunks Chapter One

1.1 Chapter Overview

This chapter discusses thunks which are special types of procedures and procedure calls you ca
defer the execution of some procedure call. Although the use of thunks is not commonplace in stand
assembly code, their semantics are quite useful in AI (artificial intelligence) and other programs. The proper
use of thunks can dramatically improve the performance of certain programs. Perhaps a reason thun
not find extensive use in assembly code is because most assembly language programmers are unaware of
their capabilities. This chapter will solve that problem by presenting the definition of thunks and describe
how to use them in your assembly programs.

1.2 First Class Objects

The actual low-level implementation of a thunk, and the invocation of a thunk, is rather simple. How-
ever, to understand why you would want to use a thunk in an assembly language program we need to jum
a higher level of abstraction and discuss the concept of First Class Objects.

A first class object is one you can treat like a normal scalar data variable. You can pass it as a paramete
(using any arbitrary parameter passing mechanism), you can return it as a function result, you can cha
object’s value via certain legal operations, you can retrieve its value, and you can assign one instance o
first class object to another. An int32 variable is a good example of a first class object.

Now consider an array. In many languages, arrays are not first class objects. Oh, you can pass them
parameters and operate on them, but you can’t assign one array to another nor can you return an array
function result in many languages. In other languages, however, all these operations are permissible o
arrays so they are first class objects (in such languages).

A statement sequence (especially one involving procedure calls) is generally not a first class object in
many programming languages. For example, in C/C++ or Pascal/Delphi you cannot pass a sequence
statements as a parameter, assign them to a variable, return them as a function result, or otherwise operate
them as though they were data. You cannot create arbitrary arrays of statements nor can you ask a seq
of statements to execute themselves except at their point of declaration.

If you’ve never used a language that allows you to treat executable statements as data, you’re probably
wondering why anyone would ever want to do this. There are, however, some very good reasons for wanting
to treat statements as data and execute them on demand. If you’re familiar with the C/C++ programming
language, consider the C/C++ "?" operator:

expr ? Texpr: Fexpr

For those who are unfamiliar with the "?" operator, it evaluates the first expression (expr) and then returns
the value of Texpr if expr is true, it evaluates and returns Fexpr if expr evaluates false. Note that this cod
does not evaluate Fexpr if expr is true; likewise, it does not evaluate Texpr if expr is false. Contrast this with
the following C/C++ function:

int ifexpr(int x, int t, int f)
{

if(x) return t;
return f;

}

A function call of the form "ifexpr(expr, Texpr, Fexpr);" is not semantically equivalent to
"expr ? Texpr : Fexpr". The ifexpr call always evaluates all three parameters while the conditional expres-
sion operator ("?") does not. If either Texpr or Fexpr produces a side-effect, then the call to ifexpr may pro-
duce a different result than the conditional operator, e.g.,
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1279

Chapter One Volume Five

a

c

and

ce of
sociated

h a RET
i = (x==y) ? a++ : b--;
j = ifexpr(x==y, c++, d--);

In this example either a is incremented or b is decremented, but not both because the conditional oper-
tor only evaluates one of the two expressions based on the values of x and y. In the second statement, how-
ever, the code both increments c and decrements d because C/C++ always evaluates all value parameters
before calling the function; that is, C/C++ eagerly evaluates function parameter expressions (while the con-
ditional operator uses deferred evaluation).

Supposing that we wanted to defer the execution of the statements "c++" and "d--" until inside the fun-
tion’s body, this presents a classic case where it would be nice to treat a pair of statements as first class
objects. Rather than pass the value of "c++" or "d--" to the function, we pass the actual statements
expand these statements inside the function wherever the format parameter occurs. While this is not possible
in C/C++, it is possible in certain languages that support the use of statements as first class objects. Natu-
rally, if it can be done in any particular language, then it can be done in assembly language.

Of course, at the machine code level a statement sequence is really nothing more than a sequen
bytes. Therefore, we could treat those statements as data by directly manipulating the object code as
with that statement sequence. Indeed, in some cases this is the best solution. However, in most cases it will
prove too cumbersome to manipulate a statement sequence by directly manipulating its object code. A better
solution is to use a pointer to the statement sequence and CALL that sequence indirectly whenever we want
to execute it. Using a pointer in this manner is usually far more efficient that manipulating the code directly,
especially since you rarely change the instruction sequence itself. All you really want to do is defer the exe-
cution of that code. Of course, to properly return from such a sequence, the sequence must end wit
instruction. Consider the following HLA implementation of the "ifexpr" function given earlier:

procedure ifexpr(expr:boolean; trueStmts:dword; falseStmts:dword);
returns("eax");

begin ifexpr;

if(expr) then

call(trueStmts);

else

call(falseStmts);

endif;

end ifexpr;
.
.
.
jmp overStmt1;

stmt1: mov(c, eax);
inc(c);
ret();

overStmt1:
jmp overStmt2

stmt2: mov(d, eax);
dec(d);
ret();

overStmt2:
ifexpr(exprVal, &stmt1, &stmt2);

(for reasons you’ll see shortly, this code assumes that the c and d variables are global, static, objects.)
Page 1280 © 2001, By Randall Hyde Version: 9/9/02

Thunks

e

u
se

ointer
ta

ults,

 static
es.

ation
voca-
ith the
e thunk
d of the
ctiva-

nk();":

r

Notice how the code above passes the addresses of the stmt1 and stmt2 labels to the ifexpr procedure.
Also note how the code sequence above jumps over the statement sequences so that the code only executes
them in the body of the ifexpr procedure.

As you can see, the example above creates two mini-procedures in the main body of the code. Within
the ifexpr procedure the program calls one of these mini-procedures (stmt1 or stmt2). Unlike standard HLA
procedures, these mini-procedures do not set up a proper activation record. There are no parameters, ther
are no local variables, and the code in these mini-procedures does not execute the standard entry or exit
sequence. In fact, the only part of the activation record present in this case is the return address.

Because these mini-procedures do not manipulate EBP’s value, EBP is still pointing at the activation
record for the ifexpr procedure. For this reason, the c and d variables must be global, static objects; yo
must not declare them in a VAR section. For if you do, the mini-procedures will attempt to access the
objects in ifexpr’s activation record, not and the caller’s activation record. This, of course, would return the
wrong value.

Fortunately, there is a way around this problem. HLA provides a special data type, known as a thunk,
that eliminates this problem. To learn about thunks, keep reading...

1.3 Thunks

A thunk is an object with two components: a pointer containing the address of some code and a p
to an execution environment (e.g., an activation record). Thunks, therefore, are an eight-byte (64-bit) da
type, though (unlike a qword) the two pieces of a thunk are independent. You can declare thunk variables in
an HLA program, assign one thunk to another, pass thunks as parameters, return them as function res
and, in general, do just about anything that is possible with a 64-bit data type containing two double word
pointers.

To declare a thunk in HLA you use the thunk data type, e.g.,

static
myThunk: thunk;

Like other 64-bit data types HLA does not provide a mechanism for initializing thunks you declare in a
section. However, you’ll soon see that it is easy to initialize a thunk within the body of your procedur

A thunk variable holds two pointers. The first pointer, in the L.O. double word of the thunk, points at
some execution environment, that is, an activation record. The second pointer, in the H.O. double word of
the thunk, points at the code to execute for the thunk.

To "call" a thunk, you simply apply the "()" suffix to the thunk’s name. For example, the following
"calls" myThunk in the procedure where you’ve declared myThunk:

myThunk();

Thunks never have parameters, so the parameter list must be empty.

A thunk invocation is a bit more involved than a simple procedure call. First of all, a thunk invoc
will modify the value in EBP (the pointer to the current procedure’s activation record), so the thunk in
tion must begin by preserving EBP’s value on the stack. Next, the thunk invocation must load EBP w
address of the thunk’s execution environment; that is, the code must load the L.O. double word of th
value into EBP. Next, the thunk must call the code at the address specified by the H.O. double wor
thunk variable. Finally, upon returning from this code, the thunk invocation must restore the original a
tion record pointer from the stack. Here’s the exact sequence HLA emits to a statement like "myThu

push((type dword myThunk)); // Pass execution environment as parm.
call((type dword myThunk[4])); // Call the thunk

The body of a thunk, that is, the code at the address found in the H.O. double word of the thunk variable,
is not a standard HLA procedure. In particular, the body of a thunk does not execute the standard entry o
exit sequences for a standard procedure. The calling code passes the pointer to the execution environment
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1281

Chapter One Volume Five

m

se

he
eed the
ith the
ces.
(i.e., an activation record) on the stack.. It is the thunk’s responsibility to preserve the current value of EBP
and load EBP with this value appearing on the stack. After the thunk loads EBP appropriately, it can exe-
cute the statements in the body of the thunk, after which it must restore EBP’s original value.

Because a thunk variable contains a pointer to an activation record to use during the execution of the
thunk’s code, it is perfectly reasonable to access local variables and other local objects in the activation
record active when you define the thunk’s body. Consider the following code:

procedure SomeProc;
var

c: int32;
d: int32;
t: thunk;

begin SomeProc;

mov(ebp, (type dword t));
mov(&thunk1, (type dword t[4]));
jmp OverThunk1;

thunk1:
push(EBP); // Preserve old EBP value.
mov([esp+8], ebp); // Get pointer to original thunk environment.
mov(d, eax);
add(c, eax);
pop(ebp); // Restore caller’s environment.
ret(4); // Remove EBP value passed as parameter.

OverThunk1:
.
.
.
t(); // Computes the sum of c and d into EAX.

This example initializes the t variable with the value of SomeProc’s activation record pointer (EBP) and
the address of the code sequence starting at label thunk1. At some later point in the code the progra
invokes the thunk which begins by pushing the pointer to SomeProc’s activation record. Then the thunk exe-
cutes the PUSH/MOV/MOV/ADD/POP/RET sequence starting at address thunk1. Since this code loads
EBP with the address of the activation record containing c and d, this code sequence properly adds the
variables together and leaves their sum in EAX. Perhaps this example is not particularly exciting since the
invocation of t occurs while EBP is still pointing at SomeProc’s activation record. However, you’ll soon see
that this isn’t always the case.

1.4 Initializing Thunks

In the previous section you saw how to manually initialize a thunk variable with the environment
pointer and the address of an in-line code sequence. While this is a perfectly legitimate way to initialize a
thunk variable, HLA provides an easier solution: the THUNK statement.

The HLA THUNK statement uses the following syntax:

thunk thunkVar := #{ code sequence }#;

thunkVar is the name of a thunk variable and code_sequence is a sequence of HLA statements (note that t
sequence does not need to contain the thunk entry and exit sequences. Specifically, it doesn’t n
"push(ebp);" and "mov([esp+8]);" instructions at the beginning of the code, nor does it need to end w
"pop(ebp);" and "ret(4);" instructions. HLA will automatically supply the thunk’s entry and exit sequen

Here’s the example from the previous section rewritten to use the THUNK statement:

procedure SomeProc;
var

c: int32;
d: int32;
Page 1282 © 2001, By Randall Hyde Version: 9/9/02

Thunks

tement.
’t

ls in the
 is much

rs,
 a

me e
.

ro

lways
t: thunk;
begin SomeProc;

thunk t :=
#{

mov(d, eax);
add(c, eax);

}#;
.
.
.
t(); // Computes the sum of c and d into EAX.

Note how much clearer and easier to read this code sequence becomes when using the THUNK sta
You don’t have to stick in statements to initialize t, you don’t have to jump over the thunk body, you don
have to include the thunk entry/exit sequences, and you don’t wind up with a bunch of statement labe
code. Of course, HLA emits the same code sequence as found in the previous section, but this form
easier to read and work with.

1.5 Manipulating Thunks

Since a thunk is a 64-bit variable, you can do anything with a thunk that you can do, in general, with any
other qword data object. You can assign one thunk to another, compare thunks, pass thunks a paramete
return thunks as function results, and so on. That is to say, thunks are first class objects. Since a thunk is
representation of a sequence of statements, those statements are effectively first class objects. In this section
we’ll explore the various ways we can manipulate thunks and the statements associated with them.

1.5.1 Assigning Thunks

To assign one thunk to another you simply move the two double words from the source thunk to the des-
tination thunk. After the assignment, both thunks specify the same sequence of statements and the saxe-
cution environment; that is, the thunks are now aliases of one another. The order of assignment (H.O
double word first or L.O. double word first) is irrelevant as long as you assign both double words before
using the thunk’s value. By convention, most programmers assign the L.O. double word first. Here’s an
example of a thunk assignment:

mov((type dword srcThunk), eax);
mov(eax, (type dword destThunk));
mov((type dword srcThunk[4]), eax);
mov(eax, (type dword destThunk[4]));

If you find yourself assigning one thunk to another on a regular basis, you might consider using a mac
to accomplish this task:

#macro movThunk(src, dest);

mov((type dword src), eax);
mov(eax, (type dword dest));
mov((type dword src[4]), eax);
mov(eax, (type dword dest[4]));

#endmacro;

If the fact that this macro’s side effect of disturbing the value in EAX is a concern to you, you can a
copy the data using a PUSH/POP sequence (e.g., the HLA extended syntax MOV instruction):
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1283

Chapter One Volume Five

e FPU

(see

 pro

r

#macro movThunk(src, dest);

mov((type dword src), (type dword dest));
mov((type dword src[4]), (type dword dest[4]));

#endmacro;

If you don’t plan on executing any floating point code in the near future, or you’re already using the
MMX instruction set, you can also use the MMX MOVQ instruction to copy these 64 bits with only two
instructions:

movq(src, mm0);
movq(mm0, dest);

Don’t forget, however, to execute the EMMS instruction before calling any routines that might use th
after this sequence.

1.5.2 Comparing Thunks

You can compare two thunks for equality or inequality using the standard 64-bit comparisons
“Extended Precision Comparisons” on page 857). If two thunks are equal then they refer to the same code
sequence with the same execution environment; if they are not equal, then they could have different code
sequences or different execution environments (or both) associated with them. Note that it doesn’t make any
sense to compare one thunk against another for less than or greater than. They’re either equal or not equal.

Of course, it’s quite easy to have two thunks with the same environment pointer and different code
pointers. This occurs when you initialize two thunk variables with separate code sequences in the same-
cedure, e.g.,

thunk t1 :=
#{

mov(0, eax);
mov(i, ebx);

}#;

thunk t2 :=
#{

mov(4, eax);
mov(j, ebx);

}#;

// At this point, t1 and t2 will have the same environment pointer
// (EBP’s value) but they will have different code pointers.

Note that it is quite possible for two thunks to refer to the same statement sequence yet have different
execution environments. This can occur when you have a recursive function that initializes a pair of thunk
variables with the same instruction sequence on different recursive calls of the function. Since each recu-
sive invocation of the function will have its own activation record, the environment pointers for the two
thunks will be different even though the pointers to the code sequence are the same. However, if the code
that initializes a specific thunk is not recursive, you can sometimes compare two thunks by simply compar-
ing their code pointers (the H.O. double words of the thunks) if you’re careful about never using thunks once
their execution environment goes away (i.e., the procedure in which you originally assigned the thunk value
returns to its caller).
Page 1284 © 2001, By Randall Hyde Version: 9/9/02

Thunks

nk

me
at

e syntax.

the
ce

ill not
1.5.3 Passing Thunks as Parameters

Since the thunk data type is effectively equivalent to a qword type, there is little you can do with a
qword object that you can’t also do with a thunk object. In particular, since you can pass qwords as parame-
ters you can certainly pass thunks as parameters to procedures.

To pass a thunk by value to a procedure is very easy, simply declare a formal parameter using the thu
data type:

procedure HasThunkParm(t:thunk);
var

i:integer;
begin HasThunkParm;

mov(1, i);
t(); // Invoke the thunk passed as a parameter.
mov(i, eax); // Note that t does not affect our environment.

end HasThunkParm;
.
.
.

thunk thunkParm :=
#{

mov(0, i); // Not the same "i" as in HasThunkParm!
}#;

HasThunkParm(thunkParm);

Although a thunk is a pointer (a pair of pointers, actually), you can still pass thunks by value. Passing a
thunk by value passes the values of those two pointer objects to the procedure. The fact that these values are
the addresses of something else is not relevant, you’re passing the data by value.

HLA automatically pushes the value of a thunk on the stack when passing a thunk by value. Since
thunks are 64-bit objects, you can only pass them on the stack, you cannot pass them in a register1. When
HLA passes a thunk, it pushes the H.O. double word (the code pointer) of the thunk first followed by the
L.O. double word (the environment pointer). This way, the two pointers are situated on the stack in the sa
order they normally appear in memory (the environment pointer at the lowest address and the code pointer
the highest address).

If you decide to manually pass a thunk on the stack yourself, you must push the two halves of the thunk
on the stack in the same order as HLA, i.e., you must push the H.O. double word first and the L.O. double
word second. Here’s the call to HasThunkParm using manual parameter passing:

push((type dword thunkParm[4]));
push((type dword thunkParm));
call HasThunkParm;

You can also pass thunks by reference to a procedure using the standard pass by referenc
Here’s a typical procedure prototype with a pass by reference thunk parameter:

procedure refThunkParm(var t:thunk); forward;

When you pass a thunk by reference, you’re passing a pointer to the thunk itself, not the pointers to
thunk’s execution environment or code sequence. To invoke such a thunk you must manually dereferen
the pointer to the thunk, push the pointer to the thunk’s execution environment, and indirectly call the code
sequence. Here’s an example implementation of the refThunkParm prototype above:

1. Technically, you could pass a thunk in two 32-bit registers. However, you will have to do this manually; HLA w
automatically move the two pointers into two separate registers for you.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1285

Chapter One Volume Five

e
o
 you

s
ms.

ss by
r

ou
e

hemes

he
procedure refThunkParm(var t:thunk);
begin refThunkParm;

push(eax);
.
.
.

mov(t, eax); // Get pointer to thunk object.
push([eax]); // Push pointer to thunk’s environment.
call((type dword [eax+4])); // Call the code sequence.

.

.

.
pop(eax);

end refThunkParm;

Of course, one of the main reasons for passing an object by reference is so you can assign a value to the
actual parameter value. Passing a thunk by reference provides this same capability – you can assign a nw
code sequence address and execution environment pointer to a thunk when you pass it by reference. Hw-
ever, always be careful when assigning values to thunk reference parameters within a procedure that
specify an execution environment that will still be valid when the code actually invokes the thunk. We’ll
explore this very problem in a later section of this chapter (see “Activation Record Lifetimes and Thunks” on
page 1288).

Although we haven’t yet covered this, HLA does support several other parameter passing mechanism
beyond pass by value and pass by reference. You can certainly pass thunks using these other mechanis
Indeed, thunks are the basis for two of HLA’s parameter passing mechanisms: pass by name and pa
evaluation. However, this is getting a little ahead of ourselves; we’ll return to this subject in a later chapte
in this volume.

1.5.4 Returning Thunks as Function Results

Like any other first class data object, we can also return thunks as the result of some function. The only
complication is the fact that a thunk is a 64-bit object and we normally return function results in a register.
To return a full thunk as a function result, we’re going to need to use two registers or a memory location to
hold the result.

To return a 64-bit (non-floating point) value from a function there are about three or four different loca-
tions where we can return the value: in a register pair, in an MMX register, on the stack, or in a memory
location. We’ll immediately discount the use of the MMX registers since their use is not general (i.e., y
can’t use them simultaneously with floating point operations). A global memory location is another possibl
location for a function return result, but the use of global variables has some well-known deficiencies, espe-
cially in a multi-threaded/multi-tasking environment. Therefore, we’ll avoid this solution as well. That
leaves using a register pair or using the stack to return a thunk as a function result. Both of these sc
have their advantages and disadvantages, we’ll discuss these two schemes in this section.

Returning thunk function results in registers is probably the most convenient way to return the function
result. The big drawback is obvious – it takes two registers to return a 64-bit thunk value. By convention,
most programmers return 64-bit values in the EDX:EAX register pair. Since this convention is very popular,
we will adopt it in this section. Keep in mind, however, that you may use almost any register pair you like to
return this 64-bit value (though ESP and EBP are probably off limits).

When using EDX:EAX, EAX should contain the pointer to the execution environment and EDX should
contain the pointer to the code sequence. Upon return from the function, you should store these two regis-
ters into an appropriate thunk variable for future use.

To return a thunk on the stack, you must make room on the stack for the 64-bit thunk value prior to
pushing any of the function’s parameters onto the stack. Then, just before the function returns, you store t
Page 1286 © 2001, By Randall Hyde Version: 9/9/02

Thunks

s it

 using
thunk result into these locations on the stack. When the function returns it cleans up the parameter
pushed on the stack but it does not free up the thunk object. This leaves the 64-bit thunk value sitting on the
top of the stack after the function returns.

The following code manually creates and destroys the function’s activation record so that it can specify
the thunk result as the first two parameters of the function’s parameter list:

procedure RtnThunkResult
(

ThunkCode:dword; // H.O. dword of return result goes here.
ThunkEnv:dword; // L.O. dword of return result goes here.
selection:boolean; // First actual parameter.
tTrue: thunk; // Return this thunk if selection is true.
tFalse:thunk // Return this thunk if selection is false.

); @nodisplay; @noframe;
begin RtnThunkResult;

push(ebp); // Set up the activation record.
mov(esp, ebp);
push(eax);

if(selection) then

mov((type dword tTrue), eax);
mov(eax, ThunkEnv);
mov((type dword tTrue[4]), eax);
mov(eax, ThunkCode);

else

mov((type dword tFalse), eax);
mov(eax, ThunkEnv);
mov((type dword tFalse[4]), eax);
mov(eax, ThunkCode);

endif;

// Clean up the activation record, but leave the eight
// bytes of the thunk return result on the stack when this
// function returns.

pop(eax);
pop(ebp);
ret(_parms_ - 8); // _parms_ is total # of bytes of parameters (28).

end RtnThunkResult;
.
.
.

// Example of call to RtnThunkResult and storage of return result.
// (Note passing zeros as the thunk values to reserve storage for the
// thunk return result on the stack):

RtnThunkResult(0, 0, ChooseOne, t1, t2);
pop((type dword SomeThunkVar));
pop((type dword SomeThunkVar[4]));

If you prefer not to list the thunk parameter as a couple of pseudo-parameters in the function’s parame-
ter list, you can always manually allocate storage for the parameters prior to the call and refer to them
the "[ESP+disp]" or "[EBP+disp]" addressing mode within the function’s body.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1287

Chapter One Volume Five

uple of

y

l

e

1.6 Activation Record Lifetimes and Thunks

There is a problem that can occur when using thunks in your applications: it’s quite possible to invoke a
thunk long after the associated execution environment (activation record) is no longer valid. Consider the
following HLA code that demonstrates this problem:

static
BadThunk: thunk;

procedure proc1;
var

i:int32;
begin proc1;

thunk BadThunk :=
#{

stdout.put("i = ", i, nl);
#};

mov(25, i);

end proc1;

procedure proc2;
var

j:int32;
begin proc2;

mov(123, j);
BadThunk();

end proc2;
.
.
.

If the main program in this code fragment calls proc1 and then immediately calls proc2, this code will prob-
ably print "i = 123" although there is no guarantee this will happen (the actual result depends on a co
factors, although "i = 123" is the most likely output).

The problem with this code example is that proc1 initializes BadThunk with the address of an execution
environment that is no longer "live" when the program actually executes the thunk’s code. The proc1 proce-
dure constructs its own activation record and initializes the variable i in this activation record with the value
25. This procedure also initializes BadThunk with the address of the code sequence containing the std-
out.put statement and it initializes BadThunk’s execution environment pointer with the address of proc1’s
activation record. Then proc1 returns to its caller. Unfortunately upon returning to its caller, proc1 also
obliterates its activation record even though BadThunk still contains a pointer into this area of memor.
Later, when the main program calls proc2, proc2 builds its own activation record (most likely over the top of
proc1’s old activation record). When proc2 invokes BadThunk, BadThunk uses the original pointer to
proc1’s activation record (which is now invalid and probably points at proc2’s activation record) from which
to fetch i’ s value. If nothing extra was pushed or popped between the proc1 invocation and the proc2 invoca-
tion, then j’ s value in proc2 is probably at the same memory location as i was in proc1’s invocation. Hence,
the stdout.put statement in the thunk’s code will print j’ s value.

This rather trivial example demonstrates an important point about using thunks – you must aways
ensure that a thunk’s execution environment is still valid whenever you invoke a thunk. In particular, if you
use HLA’s THUNK statement to automatically initialize a thunk variable with the address of a cod
Page 1288 © 2001, By Randall Hyde Version: 9/9/02

Thunks

 assign

r

th a
ase of a
 code

ht w

ut

s

 an

umber
sequence and the execution environment of the current procedure, you must not invoke that thunk once the
procedure returns to its caller; for at that point the thunk’s execution environment pointer will not be valid.

This discussion does not suggest that you can only use a thunk within the procedure in which you
a value to that thunk. You may continue to invoke a thunk, even from outside the procedure whose activation
record the thunk references, until that procedure returns to its caller. So if that procedure calls some othe
procedure (or even itself, recursively) then it is legal to call the thunk associated with that procedure.

1.7 Comparing Thunks and Objects

Thunks are very similar to objects insofar as you can easily implement an abstract data type wi
thunk. Remember, an abstract data type is a piece of data and the operation(s) on that data. In the c
thunk, the execution environment pointer can point at the data while the code address can point at the
that operates on the data. Since you can also use objects to implement abstract data types, one migonder
how objects and thunks compare to one another.

Thunks are somewhat less "structured" than objects. An object contains a set of data values and opera-
tions (methods) on those data values. You cannot change the data values an object operates upon witho
fundamentally changing the object (i.e., selecting a different object in memory). It is possible, however, to
change the execution environment pointer in a thunk and have that thunk operate on fundamentally different
data. Although such a course of action is fraught with difficulty and very error-prone, there are some time
when changing the execution environment pointer of a thunk will produce some interesting results. This text
will leave it up to you to discover how you could abuse thunks in this fashion.

1.8 An Example of a Thunk Using the Fibonacci Function

By now, you’re probably thinking "thunks may be interesting, but what good are they?" The code asso-
ciated with creating and invoking thunks is not spectacularly efficient (compared, say, to a straight procedure
call). Surely using thunks must negatively impact the execution time of your code, eh? Well, like so many
other programming constructs, the misuse and abuse of thunks can have a negative impact on the execution
time of your programs. However, in an appropriate situation thunks can dramatically improve the perfor-
mance of your programs. In this section we’ll explore one situation where the use of thunks produces
amazing performance boost: the calculation of a Fibonacci number.

Earlier in this text there was an example of a Fibonacci number generation program (see “Fibonacci
Number Generation” on page 50). As you may recall, the Fibonacci function fib(n) is defined recursively for
n>= 1 as follows:

 fib(1) = 1;
 fib(2) = 1;
 fib(n) = fib(n-1) + fib(n-2)

One problem with this recursive definition for fib is that it is extremely inefficient to compute. The
number of clock cycles this particular implementation requires to execute is some exponential factor of n.
Effectively, as n increases by one this algorithm takes twice as long to execute.

The big problem with this recursive definition is that it computes the same values over and over again.
Consider the statement "fib(n) = fib(n-1) + fib(n-2)". Note that the computation of fib(n-1) also computes
fib(n-2) (since fib(n-1) = fib(n-2) + fib(n-3) for all n >=4). Although the computation of fib(n-1) computes
the value of fib(n-2) as part of its calculation, this simple recursive definition doesn’t save that result, so it
must recompute fib(n-2) upon returning from fib(n-1) in order to complete the calculation of fib(n).

Since the calculation of Fib(n-1) generally computes Fib(n-2) as well, what would be nice is to have this
function return both results simultaneously; that is, not only should Fib(n-1) return the Fibonacci n
for n-1, it should also return the Fibonacci number for n-2 as well. In this example, we will use a thunk to
store the result of Fib(n-2) into a local variable in the Fibonacci function.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1289

Chapter One Volume Five

s the

th
Figure 1.1 Using a Thunk to Set the Fib(n-2) Value in a Different Activation Record

The following program provides two versions of the Fibonacci function: one that uses thunks to pas
Fib(n-2) value back to a previous invocation of the function. Another version of this function computes the
Fibonacci number using the traditional recursive definition. The program computes the running time of bo
implementations and displays the results. Without further ado, here’s the code:

program fibThunk;
#include("stdlib.hhf")

// Fibonacci function using a thunk to calculate fib(n-2)
// without making a recursive call.

procedure fib(n:uns32; nm2:thunk); nodisplay; returns("eax");
var
 n2: uns32; // A recursive call to fib stores fib(n-2) here.
 t: thunk; // This thunk actually stores fib(n-2) in n2.

begin fib;

 // Special case for n = 1, 2. Just return 1 as the
 // function result and store 1 into the fib(n-2) result.

 if(n <= 2) then

 mov(1, eax); // Return as n-1 value.
 nm2(); // Store into caller as n-2 value.

 else

 // Create a thunk that will store the fib(n-2) value
 // into our local n2 variable.

 thunk t :=
 #{
 mov(eax, n2);
 }#;

n2 variable

Activation Record for Fib(n)

n2 variable

Activation Record for Fib(n-1)

When Fib(n-1) computes
Fib(n-2) as part of its
calculation, it calls a thunk
to store Fib(n-2) into the
n2 variable of Fib(n)‘s
activation record.
Page 1290 © 2001, By Randall Hyde Version: 9/9/02

Thunks
 mov(n, eax);
 dec(eax);
 fib(eax, t); // Compute fib(n-1).

 // Pass back fib(n-1) as the fib(n-2) value to a previous caller.

 nm2();

 // Compute fib(n) = fib(n-1) [in eax] + fib(n-2) [in n2]:

 add(n2, eax);

 endif;

end fib;

// Standard fibonacci function using the slow recursive implementation.

procedure slowfib(n:uns32); nodisplay; returns("eax");
begin slowfib;

 // For n= 1,2 just return 1.

 if(n <= 2) then

 mov(1, eax);

 else

 // Return slowfib(n-1) + slowfib(n-2) as the function result:

 dec(n);
 slowfib(n); // compute fib(n-1)
 push(eax); // Save fib(n-1);

 dec(n); // compute fib(n-2);
 slowfib(n);

 add([esp], eax); // Compute fib(n-1) [on stack] + fib(n-2) [in eax].
 add(4, esp); // Remove old value from stack.

 endif;

end slowfib;

var
 prevTime:dword[2]; // Used to hold 64-bit result from RDTSC instr.
 qw: qword; // Used to compute difference in timing.
 dummy:thunk; // Used in original calls to fib.

begin fibThunk;

 // "Do nothing" thunk used by the initial call to fib.
 // This thunk simply returns to its caller without doing
 // anything.

 thunk dummy := #{ }#;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1291

Chapter One Volume Five
 // Call the fibonacci routines to "prime" the cache:

 fib(1, dummy);
 slowfib(1);

 // Okay, compute the times for the two fibonacci routines for
 // values of n from 1 to 32:

 for(mov(1, ebx); ebx < 32; inc(ebx)) do

 // Read the time stamp counter before calling fib:
 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 fib(ebx, dummy);
 mov(eax, ecx);

 // Read the timestamp counter and compute the approximate running
 // time of the current call to fib:

 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 // Display the results and timing from the call to fib:

 stdout.put
 (
 "n=",
 (type uns32 ebx):2,
 " fib(n) = ",
 (type uns32 ecx):7,
 " time="
);
 stdout.putu64size(qw, 5, ' ');

 // Okay, repeat the above for the slowfib implementation:

 rdtsc();
 mov(eax, prevTime);
 mov(edx, prevTime[4]);

 slowfib(ebx);
 mov(eax, ecx);
 rdtsc();
 sub(prevTime, eax);
 sbb(prevTime[4], edx);
 mov(eax, (type dword qw));
 mov(edx, (type dword qw[4]));

 stdout.put(" slowfib(n) = ", (type uns32 ecx):7, " time = ");
 stdout.putu64size(qw, 8, ' ');
 stdout.newln();

 endfor;
Page 1292 © 2001, By Randall Hyde Version: 9/9/02

Thunks
end fibThunk;

Program 1.1 Fibonacci Number Generation Using Thunks

This (relatively) simple modification to the Fibonacci function produces a dramatic difference in the
run-time of the code. The run-time of the thunk implementation is now well within reason. The following
table lists the same run-times of the two functions (thunk implementation vs. standard recursive implementa-
tion). As you can see, this small change to the program has made a very significant difference.

Table 1: Running Time of the FIB and SlowFib Functions

n
Fib Execution Time

(Thunk

Implementation)a

SlowFib Execution
Time (Recursive
Implementation)

1 60 97

2 152 100

3 226 166

4 270 197

5 302 286

6 334 414

7 369 594

8 397 948

9 432 1513

10 473 2421

11 431 3719

12 430 6010

13 467 9763

14 494 15758

15 535 25522

16 564 41288

17 614 66822

18 660 108099

19 745 174920
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1293

Chapter One Volume Five

s

s

s the

cci func
Note that a thunk implementation of the Fibonacci function is not the only way to improve the perfor-
mance of this function. One could have just as easily (more easily, in fact) passed the address of the local n2
variable by reference and had the recursive call store the Fib(n-2) value directly into the n2 variable. For that
matter, one could have written an interactive (rather than recursive) solution to this problem that compute
the Fibonacci number very efficiently. However, alternate solutions to Fibonacci aside, this example does
clearly demonstrate that the use of a thunk in certain situations can dramatically improve the performance of
an algorithm.

1.9 Thunks and Artificial Intelligence Code

Although the use of thunks to compute the Fibonacci number in the previous section produced a dra-
matic performance boost, thunks clearly were not necessary for this operation (indeed, not too many people
really need to compute Fibonacci numbers, for that matter). Although this example demonstrates that thunk
can improve performance in various situations, it does not demonstrate the need for thunks. After all, there
are even more efficient implementations of the Fibonacci function (though nothing quite so dramatic a
difference between Fib and SlowFib, which went from exponential to linear execution time) that do not
involve the use of thunks. So although the use of thunks can increase the performance of the Fibona-
tion (over the execution time of the standard recursive implementation), the example in the previous section

20 735 283001

21 791 457918

22 886 740894

23 943 1198802

24 919 1941077

25 966 3138466

26 1015 5094734

27 1094 8217396

28 1101 13297000

29 1158 21592819

30 3576b 34927400

31 1315 56370705

a. All times are in CPU cycles as measured via RDTSC on a Pentium II
processor.

b. This value was not recorded properly because of OS overhead.

Table 1: Running Time of the FIB and SlowFib Functions

n
Fib Execution Time

(Thunk

Implementation)a

SlowFib Execution
Time (Recursive
Implementation)
Page 1294 © 2001, By Randall Hyde Version: 9/9/02

Thunks

function
t a

ed

an

ise

ntaining

er

nds, of

s
d

ly

of
does not demonstrate the need for thunks since there are better implementations of the Fibonacci
that do not use thunks. In this section we will explore some types of calculations for which thunks presen
very good, if not the best, solution.

In the field of Artifi cial Intelligence (AI from this point forward) researchers commonly use interpret
programming languages such as LISP or Prolog to implement various algorithms. Although you could write
an AI program in just about any language, these interpreted languages like LISP and Prolog have a couple of
benefits that help make writing AI programs much less difficult. Among a long list of other features, two
important features stand out: (1) statements in these languages are first class objects, (2) these languages c
defer the evaluation of function parameters until the parameters’ values are actually needed (lazy evalua-
tion). Since thunks provide exactly these two features in an HLA program, it should come as no surpr
that you can use thunks to implement various AI algorithm in assembly language.

Before going too much farther, you should realize that AI programs usually take advantage of many
other features in LISP and Prolog besides the two noted above. Automatic dynamic memory allocation and
garbage collection are two big features that many AI programs use, for example. Also, the run-time interpre-
tation of language statements is another big feature (i.e., the user of a program can input a string co
a LISP or Prolog statement and the program can execute this string as part of the program). Although it is
certainly possible to achieve all this in an assembly language program, such support built into languages like
LISP and Prolog may require (lots of) additional coding in assembly language. So please don’t allow this
section to trivialize the effort needed to write AI programs in assembly language; writing (good) AI pro-
grams is difficult and tools like LISP and Prolog can reduce that effort.

Of course, a major problem with languages like LISP and Prolog is that programs written in these (int-
preted) languages tend to run very slow. Some people may argue that there isn’t a sufficient difference in
performance between programs written in C/C++ and assembly to warrant the extra effort of writing the
code in assembly; such a claim is difficult to make about LISP or Prolog programs versus an assembly
equivalent. Whereas a well-written assembly program may be only a couple of times faster than a well-writ-
ten C/C++ program, a well-written assembly program will probably be tens, if not hundreds or thousa
times faster than the equivalent LISP or Prolog code. Therefore, reworking at least a portion of an AI pro-
gram written in one of these interpreted languages can produce a very big boost in the performance of the AI
application.

Traditionally, one of the big problem areas AI programmers have had when translating their application
to a lower-level language has been the issue of "function calls (statements) as first class objects and the nee
for lazy evaluation." Traditional third generation programming languages like C/C++ and Pascal simply do
not provide these facilities. AI applications that make use of these facilities in languages like LISP or Prolog
often have to be rewritten in order to avoid the use of these features in the lower-level languages. Assembly
language doesn’t suffer from this problem. Oh, it may be difficult to implement some feature in assemb
language, but if it can be done, it can be done in assembly language. So you’ll never run into the problem of
assembly language being unable to implement some feature from LISP, Prolog, or some other language.

Thunks are a great vehicle for deferring the execution of some code until a later time (or, possibly, for-
ever). One application area where deferred execution is invaluable is in a game. Consider a situation in
which the current state of a game suggests one of several possible moves a piece could make based on a
decision made by an adversary (e.g., a particular chess piece could make one of several different moves
depending on future moves by the other color). You could represent these moves as a list of thunks and exe-
cuting the move by selecting and executing one of the thunks from the list at some future time. You could
base the selection of the actual thunk to execute on adversarial moves that occur at some later time.

Thunks are also useful for passing results of various calculations back to several different points in your
code. For example, in a multi-player strategy game the activities of one player could be broadcast to a list
interested players by having those other players "register" a thunk with the player. Then, whenever the
player does something of interest to those other players, the program could execute the list of thunks and
pass whatever data is important to those other players via the thunks.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1295

Chapter One Volume Five

that

ute and
 return
n. The

alue) is

r

o

n
ata

r

1.10 Thunks as Triggers

Thunks are also useful as triggers. A trigger is a device that fires whenever a certain condition is met.
Probably the most common example of a trigger is a database trigger that executes some code whenever
some condition occurs in the database (e.g., the entry of an invalid data or the update of some field). Trig-
gers are useful insofar as they allow the use of declarative programming in your assembly code. Declarative
programming consists of some declarations that automatically execute when a certain condition exists. Such
declarations do not execute sequentially or in response to some sort of call. They are simply part of the pro-
gramming environment and automatically execute whenever appropriate. At the machine level, of course,
some sort of call or jump must be made to such a code sequence, but at a higher level of abstraction the code
seems to "fire" (execute) all on its own.

To implement declarative programming using triggers you must get in the habit of writing code
always calls a "trigger routine" (i.e., a thunk) at any given point in the code where you would want to handle
some event. By default, the trigger code would be an empty thunk, e.g.:

procedure DefaultTriggerProc; @nodisplay; @noframe;
begin DefaultTriggerProc;

// Immediately return to the caller and pop off the environment
// pointer passed to us (probably a NULL pointer).

ret(4);

end DefaultTriggerProc;

static
DefaultTrigger: thunk: @nostorage;

dword 0, &DefaultTriggerProc;

The code above consists of two parts: a procedure that corresponds to the default thunk code to exec
a declaration of a default trigger thunk object. The procedure body consists of nothing more than a
that pops the EBP value the thunk invocation pushes and then returns back to the thunk invocatio
default trigger thunk variable contains NULL (zero) for the EBP value and the address of the DefaultTrig-
gerProc code as the code pointer. Note that the value we pass as the environment pointer (EBP v
irrelevant since DefaultTriggerProc ignores this value.

To use a trigger, you simply declare a thunk variable like DefaultTrigger above and initialize it with the
address of the DefaultTriggerProc procedure. You will need a separate thunk variable for each trigger event
you wish to process; however, you will only need one default trigger procedure (you can initialize all trigge
thunks with the address of this same procedure). Generally, these trigger thunks will be global variables so
you can access the thunk values throughout your program. Yes, using global variables is often a no-no from
a structured point of view, but triggers tend to be global objects that several different procedures share, s
using global objects is appropriate here. If using global variables for these thunks offends you, then bury
them in a class and provide appropriate accessor methods to these thunks.

Once you have a thunk you want to use as a trigger, you invoke that thunk from the appropriate point i
your code. As a concrete example, suppose you have a database function that updates a record in the d-
base. It is common (in database programs) to trigger an event after the update and, possibly, before the
update. Therefore, a typical database update procedure might invoke two thunks – one before and one afte
the body of the update procedure’s code. The following code fragment demonstrates how you code do this:

static
preUpdate: thunk: @nostorage;

dword 0, &DefaultTriggerProc;

postUpdate: thunk: @nostorage;
dword 0, &DefaultTriggerProc;

.

Page 1296 © 2001, By Randall Hyde Version: 9/9/02

Thunks

.

n

es since

trigger.

etion,
.

.
procedure databaseUpdate(<< appropriate parameters >>);
 << declarations >>
begin databaseUpdate;

preUpdate(); // Trigger the pre-update event.

<< Body of update procedure >>

postUpdate(); // Trigger the post-update event.

end databaseUpdate;

As written, of course, these triggers don’t do much. They call the default trigger procedure that imme-
diately returns. Thus far, the triggers are really nothing more than a waste of time and space in the program
However, since the preUpdate and postUpdate thunks are variables, we can change their values under pro-
gram control and redirect the trigger events to different code.

When changing a trigger’s value, it’s usually a good idea to first preserve the existing thunk data. There
isn’t any guarantee that the thunk points at the default trigger procedure. Therefore, you should save the
value so you can restore it when you’re done handling the trigger event (assuming you are writing an event
handler that shuts down before the program terminates). If you’re setting and restoring a trigger value in a
procedure, you can copy the global thunk’s value into a local variable prior to setting the thunk and you ca
restore the thunk from this local variable prior to returning from the procedure:

procedure DemoRestoreTrigger;
var

RestoreTrigger: dword[2];
begin DemoRestoreTrigger;

// The following three statements "register" a thunk as the
// "GlobalEvent" trigger:

mov((type dword GlobalEvent[0]), RestoreTrigger[0]);
mov((type dword GlobalEvent[4]), RestoreTrigger[4]);
thunk GlobalEvent := #{ <<thunk body >> }#;

<< Body of DemoRestoreTrigger procedure >>

// Restore the original thunk as the trigger event:

mov(RestoreTrigger[0], (type dword GlobalEvent[0]));
mov(RestoreTrigger[4], (type dword GlobalEvent[4]));

end DemoRestoreTrigger;

Note that this code works properly even if DemoRestoreTrigger is recursive since the RestoreTrigger vari-
able is an automatic variable. You should always use automatic (VAR) objects to hold the saved valu
static objects have only a single instance (which would fail in a multi-threaded environment or if DemoRe-
storeTrigger is recursive).

One problem with the code in the example above is that it replaces the current trigger with a new
While this is sometimes desirable, more often you’ll probably want to chain the trigger events. That is,
rather than having a trigger call the most recent thunk, which returns to the original code upon compl
you’ll probably want to call the original thunk you replaced before or after the current thunk executes. This
way, if several procedures register a trigger on the same global event, they will all "fi re" when the event
occurs. The following code fragment shows the minor modifications to the code fragment above needed to
pull this off:

procedure DemoRestoreTrigger;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1297

Chapter One Volume Five

ess
is
var
PrevTrigger: thunk;

begin DemoRestoreTrigger;

// The following three statements "register" a thunk as the
// "GlobalEvent" trigger:

mov((type dword GlobalEvent[0]), (type dword PrevTrigger[0]));
mov((type dword GlobalEvent[4]), (type dword PrevTrigger[4]));
thunk GlobalEvent :=

#{
PrevThunk();
<<thunk body >>

}#;

<< Body of DemoRestoreTrigger procedure >>

// Restore the original thunk as the trigger event:

mov((type dword PrevTrigger[0]), (type dword GlobalEvent[0]));
mov((type dword PrevTrigger[4]), (type dword GlobalEvent[4]));

end DemoRestoreTrigger;

The principal differences between this version and the last is that PrevTrigger (a thunk) replaces the
RestoreTrigger (two double words) variable and the thunk code invokes PrevTrigger before executing its
own code. This means that the thunk’s body will execute after all the previous thunks in the chain. If you
would prefer to execute the thunks body before all the previous thunks in the chain, then simply invoke the
thunk after the thunk’s body, e.g.,

thunk GlobalEvent :=
#{

<<thunk body >>
PrevThunk();

}#;

In practice, most programs set a trigger event once and let a single, global, trigger handler proc
events from that point forward. However, if you’re writing more sophisticated code that enables and d-
ables trigger events throughout, you might want to write a macro that helps automate saving, setting, and
restore thunk objects. Consider the following HLA macro:

#macro EventHandler(Event, LocalThunk);

mov((type dword Event[0]), (type dword LocalThunk[0]));
mov((type dword Event[4]), (type dword LocalThunk[4]));
thunk Event :=

#terminator EndEventHandler;

mov((type dword LocalThunk[0]), (type dword Event[0]));
mov((type dword LocalThunk[4]), (type dword Event[4]));

#endmacro;

This macro lets you write code like the following:

procedure DemoRestoreTrigger;
var

PrevTrigger: thunk;
begin DemoRestoreTrigger;
Page 1298 © 2001, By Randall Hyde Version: 9/9/02

Thunks

the

nd
EventHandler(GlobalEvent, PrevTrigger) // Note: no semicolon here!

#{
PrevThunk();
<<thunk body >>

}#;

<< Body of DemoRestoreTrigger procedure >>

EndEventHandler;

end DemoRestoreTrigger;

Especially note the comment stating that no semicolon follows the EventHandler macro invocation. If
you study the EventHandler macro carefully, you’ll notice that macro ends with the first half of a THUNK
statement. The body of the EventHandler..EndEventHandler statement (macro invocation) must begin with
a thunk body declaration that completes the THUNK statement begun in EventHandler. If you put a semico-
lon at the end of the EventHandler statement, this will insert the semicolon into the middle of the THUNK
statement, resulting in a syntax error. If these syntactical gymnastics bother you, you can always remove the
THUNK statement from the macro and require the end user to type the full THUNK statement at the begin-
ning of the macro body. However, saving this extra type is what macros are all about; most users would
probably rather deal with remembering not to put a semicolon at the end of the EventHandler statement
rather than do this extra typing.

1.11 Jumping Out of a Thunk

Because a thunk is a procedure nested within another procedure’s body, there are some interesting situ-
ations that can arise during program execution. One such situation is jumping out of a thunk and into
surrounding code during the execution of that thunk. Although it is possible to do this, you must exercise
great caution when doing so. This section will discuss the precautions you must take when leaving a thunk
other than via a RET instruction.

Perhaps the best place to start is with a couple of examples that demonstrate various ways to abnormally
exit a thunk. The first thunk in the example below demonstrates a simple JMP instruction while the seco
thunk in this example demonstrates leaving a thunk via a BREAK statement.

procedure ExitThunks;
var

jmpFrom:thunk;
breakFrom:thunk;

begin ExitThunks;

thunk jmpFrom :=
#{

// Just jump out of this thunk and back into
// the ExitThunks procedure:

jmp XTlabel;
}#;

// Execute the thunk above (which winds up jumping to the
// XTlabel label below:

jmpFrom();

XTlabel:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1299

Chapter One Volume Five

n’

v

r

// Create a loop inside the ExitThunks procedure and
// define a thunk within this loop. Use a BREAK statement
// within the thunk to exit the thunk (and loop).

forever

thunk breakFrom :=
#{

// Break out of this thunk and the surrounding
// loop via the following BREAK statement:

break;
}#;

// Invoke the thunk (which causes use to exit from the
// surrounding loop):

breakFrom();

endfor;

end ExitThunks;

Obviously, you should avoid constructs like these in your thunks. The control flow in the procedure
above is very unusual, to say the least, and others reading this code will have a difficult time fully compre-
hending what is going on. Of course, like other structured programming techniques that make programs
easier to read, you may discover the need to write code like this under special circumstances. Just dot
make a habit of doing this gratuitously.

There is a problem with breaking out of the thunks as was done in the code above: this scheme leaves a
bunch of data on the stack (specifically, the thunk’s parameter, the return address, and the saved EBP value
in this particular example). Had ExitThunks pushed some registers on the stack that it needed to presere,
ESP would not be properly pointing at those register upon reaching the end of the function. Therefore, pop-
ping these registers off the stack would load garbage into the registers. Fortunately, the HLA standard exit
sequence reloads ESP from EBP prior to popping EBP’s value and the return address off the stack; this
resynchronizes ESP prior to returning from the procedure. However, anything you push on the stack afte
the standard entry sequence will not be on the top of stack if you prematurely bail out of a thunk as was done
in the previous example.

The only reasonable solution is to save a copy of the stack pointer’s value in a local variable after you
push any important data on the stack. Then restore ESP from this local (automatic) variable before attempt-
ing to pop any of that data off the stack. The following implementation of ExitThunks demonstrates this
principle in action:

procedure ExitThunks;
var

jmpFrom: thunk;
breakFrom: thunk;
ESPsave: dword;

begin ExitThunks;

push(eax); // Registers we wish to preserve.
push(ebx);
push(ecx);
push(edx);
mov(esp, ESPsave); // Preserve ESP’s value for return.

thunk jmpFrom :=
#{

<< Code, as appropriate, for this thunk >>
Page 1300 © 2001, By Randall Hyde Version: 9/9/02

Thunks
// Just jump out of this thunk and back into
// the ExitThunks procedure:

jmp XTlabel;
}#;

// Execute the thunk above (which winds up jumping to the
// XTlabel label below:

jmpFrom();

XTlabel:

// Create a loop inside the ExitThunks procedure and
// define a thunk within this loop. Use a BREAK statement
// within the thunk to exit the thunk (and loop).

forever

thunk breakFrom :=
#{

<< Code, as appropriate, for this thunk >>

// Break out of this thunk and the surrounding
// loop via the following BREAK statement:

break;
}#;

// Invoke the thunk (which causes use to exit from the
// surrounding loop):

breakFrom();

endfor;

<< Any other code required by the procedure >>

// Restore ESP’s value from ESPsave in case one of the thunks (or both)
// above have prematurely exited, leaving garbage on the stack.

mov(ESPsave, esp);

// Restore the registers and leave:

pop(edx);
pop(ecx);
pop(ebx);
pop(eax);

end ExitThunks;

This scheme will work properly because the thunks always set up EBP to point at ExitThunks’ activation
record (this is true even if the program calls these thunks from some other procedures). The ESPsave vari-
able must be an automatic (VAR) variable if this code is to work properly in all cases.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1301

Chapter One Volume Five

 the

.
h

e

l

 to

 and
ee

use a

se a
1.12 Handling Exceptions with Thunks

Thunks are also useful for passing exception information back to some code in the calling tree when
HLA exception handling code would be inappropriate (e.g., if you don’t want to immediately abort the oper-
ation of the current code, you just want to pass data back to some previous code in the current call chain)
Before discussing how to implement some exception handler with a thunk, perhaps we should discuss wy
we would want to do this. After all, HLA has an excellent exception handling mechanism – th
TRY..ENDTRY and RAISE statements; why not use those instead of processing exceptions manually with
thunks? There are two reasons for using thunks to handle exceptions – you might want to bypass the norma
exception handling code (i.e., skip over TRY..ENDTRY blocks for a certain event and pass control directly
to some fixed routine) or you might want to resume execution after an exception occurs. We’ll look at these
two mechanisms in this section.

One of the uses for thunks in exception handling code is to bypass any intermediate TRY..ENDTRY
statements between the point of the exception and the handler you’d like to use for the exception. For exam-
ple, suppose you have the following call chain in your program:

HasExceptionHandler->MayHaveOne->MayHaveAnother->CausesTheException

In this sequence the procedure CausesTheException encounters some exceptional condition. Were you
to write the code using the standard RAISE and TRY..ENDTRY statements, then the last TRY..ENDTRY
statement (that handles the specific exception) would execute its EXCEPT clause and deal with this excep-
tion. In the current example, that means that MayHaveOne or MayHaveAnother could trap and attempt to
handle this exception. Using the standard exception handling mechanism, it is very difficult to ensure that
HasExceptionHandler is the only procedure that responds to this exception.

One way to avoid this problem is to use a thunk to transfer control to HasExceptionHandler rather than
the RAISE statement. By declaring a global thunk and initializing it within HasExceptionHandler to exe-
cute the exception handler, you can bypass any intermediate procedures in the call chain and jump directly
HasExceptionHandler from the offending code. Don’t forget to save ESP’s value and restore it if you bail
out of the exception handler code inside the thunk and jump directly into the HasExceptionHandler code
(see “Jumping Out of a Thunk” on page 1299).

Granted, needing to skip over exception handlers is a bit of a synthetic problem that you won’t encoun-
ter very often in real-life programs. However, the second feature raised above, resuming the original code
after handling an exception, is something you may need to do from time to time. HLA’s exceptions do not
allow you to resume the code that raised the exception, so if you need this capability thunks provide a good
solution. To resume the interrupted code when using a thunk, all you have to do is return from the thunk in
the normal fashion. If you don’t want to resume the original code, then you can jump out of the thunk
into the surrounding procedure code (don’t forget to save and restore ESP in that surrounding code, s
“Jumping Out of a Thunk” on page 1299 for details). The nice thing about a thunk is that you don’t have to
decide whether you’re going to bail out of the thunk or resume the execution of the original code while writ-
ing your program. You can write some code within the thunk to make this decision at run-time.

1.13 Using Thunks in an Appropriate Manner

This chapter presents all sorts of novel uses for thunks. Thunks are really neat and you’ll fi nd all kinds
of great uses for them if you just think about them for a bit. However, it’s also easy to get carried away and
use thunks in an inappropriate fashion. Remember, thunks are not only a pointer to a procedure but a pointer
to an execution environment as well. In many circumstances you don’t need the execution environment
pointer (i.e., the pointer to the activation record). In those cases you should remember that you can
simple procedure pointer rather than a thunk to indirectly call the "thunk" code. A simple indirect call is a
bit more efficient than a thunk invocation, so unless you really need all the features of the thunk, just u
procedure pointer instead.
Page 1302 © 2001, By Randall Hyde Version: 9/9/02

Thunks

or

m as
1.14 Putting It All Together

Although thunks are quite useful, you don’t see them used in many programs. There are two reasons for
this – most high level languages don’t support thunks and, therefore, few programmers have sufficient expe-
rience using thunks to know how to use this appropriately. Most people learning assembly language, f
example, come from a standard imperative programming language background (C/C++, Pascal, BASIC,
FORTRAN, etc.) and have never seen this type of programming construct before. Those who are used to
programming in languages where thunks are available (or a similar construct is available) tend not to be the
ones who learn assembly language.

If you happen to lack the prerequisite knowledge of thunks, you should not write off this chapter as
unimportant. Thunks are definitely a programming tool you should be aware of, like recursion, that’s really
handy in lots of situations. You should watch out for situations where thunks are applicable and use the
appropriate.

We’ll see additional uses for thunks in the next chapter on iterators and in the chapter on advanced
parameter passing techniques, later in this volume.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1303

Chapter One Volume Five
Page 1304 © 2001, By Randall Hyde Version: 9/9/02

	Thunks Chapter One
	1.1 Chapter Overview
	1.2 First Class Objects
	1.3 Thunks
	1.4 Initializing Thunks
	1.5 Manipulating Thunks
	1.5.1 Assigning Thunks
	1.5.2 Comparing Thunks
	1.5.3 Passing Thunks as Parameters
	1.5.4 Returning Thunks as Function Results

	1.6 Activation Record Lifetimes and Thunks
	1.7 Comparing Thunks and Objects
	1.8 An Example of a Thunk Using the Fibonacci Function
	1.9 Thunks and Artificial Intelligence Code
	1.10 Thunks as Triggers
	1.11 Jumping Out of a Thunk
	1.12 Handling Exceptions with Thunks
	1.13 Using Thunks in an Appropriate Manner
	1.14 Putting It All Together

