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More Data Representation Chapter Four

4.1 Chapter Overview

Although the basic machine data objects (bytes, words, and double words) appear to represent nothin 
more than signed or unsigned numeric values, we can employ these data types to represent many other types 
of objects.  This chapter discusses some of the other objects and their internal computer representatio

This chapter begins by discussing the floating point (real) numeric format.  After integer representation, 
floating point representation is the second most popular numeric format in use on modern compu-
tems1.   Although the floating point format is somewhat complex, the necessity to handle non-integer calcu-
lations in modern programs requires that you understand this numeric format and its limitations.

Binary Coded Decimal (BCD) is another numeric data representation that is useful in certain contxts. 
Although BCD is not suitable for general purpose arithmetic, it is useful in some embedded applic 
The principle benefit of the BCD format is the ease with which you can convert between string and BCD for-
mat.  When we look at the BCD format a little later in this chapter, you’ll see why this is the case.

Computers can represent all kinds of different objects, not just numeric values.  Characters are, unque-
tionably, one of the more popular data types a computer manipulates.  In this chapter you will take a look at 
a couple of different ways we can represent individual characters on a computer system.  This chapter dis-
cusses two of the more common character sets in use today: the ASCII character set and the Unicode chara-
ter set.

This chapter concludes by discussing some common non-numeric data types like pixel colors on a video 
display, audio data, video data, and so on.  Of course, there are lots of different representations for any kind 
of standard data you could envision;  there is no way two chapters in a textbook can cover them all.  (And 
that’s not even considering specialized data types you could create).  Nevertheless, this chapter (and the las 
should give you the basic idea behind representing data on a computer system.

4.2 An Introduction to Floating Point Arithmetic

Integer arithmetic does not let you represent fractional numeric values.  Therefore, modern CPUs sup-
port an approximation of real arithmetic: floating point arithmetic.  A big problem with floating point arith-
metic is that it does not follow the standard rules of algebra. Nevertheless, many programmers apply normal 
algebraic rules when using floating point arithmetic. This is a source of defects in many programs. One of 
the primary goals of this section is to describe the limitations of floating point arithmetic so you will under-
stand how to use it properly.

Normal algebraic rules apply only to infinite precision arithmetic. Consider the simple statemen 
“x:=x+1,” x is an integer. On any modern computer this statement follows the normal rules of algebra as 
long as overflow does not occur. That is, this statement is valid only for certain values of x
(minint <= x < maxint). Most programmers do not have a problem with this because they are well aware of 
the fact that integers in a program do not follow the standard algebraic rules (e.g., 5/2 ≠ 2.5).

Integers do not follow the standard rules of algebra because the computer represents them with nite 
number of bits. You cannot represent any of the (integer) values above the maximum integer or below the 
minimum integer. Floating point values suffer from this same problem, only worse. After all, the integers are 
a subset of the real numbers. Therefore, the floating point values must represent the same infinite set of inte-
gers. However, there are an infinite number of values between any two real values, so this problem is infi-
nitely worse. Therefore, as well as having to limit your values between a maximum and minimum range, y 
cannot represent all the values between those two ranges, either.

1. There are other numeric formats, such as fixed point formats and binary coded decimal format.
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To represent real numbers, most floating point formats employ scientific notation and use some numbe 
of bits to represent a mantissa  and a smaller number of bits to represent an exponent. The end result is that 
floating point numbers can only represent numbers with a specific number of significant digits. This has a 
big impact on how floating point arithmetic operates. To easily see the impact of limited precision arith-
metic, we will adopt a simplified decimal floating point format for our examples. Our floating point format 
will provide a mantissa with three significant digits and a decimal exponent with two digits. The mantissa 
and exponents are both signed values as shown in Figure 4.1

Figure 4.1 Simple Floating Point Format

When adding and subtracting two numbers in scientific notation, you must adjust the two values so that 
their exponents are the same. For example, when adding 1.23e1 and 4.56e0, you must adjust the values so 
they have the same exponent. One way to do this is to convert 4.56e0 to 0.456e1 and then add. This produces 
1.686e1. Unfortunately, the result does not fit into three significant digits, so we must either round or trun-
cate the result to three significant digits. Rounding generally produces the most accurate result, sos 
round the result to obtain 1.69e1. As you can see, the lack of precision (the number of digits or bits we main-
tain in a computation) affects the accuracy (the correctness of the computation).

In the previous example, we were able to round the result because we maintained four significant digits 
during  the calculation. If our floating point calculation is limited to three significant digits during computa-
tion, we would have had to truncate the last digit of the smaller number, obtaining 1.68e1 which is even less 
correct. To improve the accuracy of floating point calculations, it is necessary to add extra digits for use dur-
ing the calculation.  Extra digits available during a computation are known as guard digits  (or guard bits in 
the case of a binary format). They greatly enhance accuracy during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to worry about unless you are 
greatly concerned about the accuracy of your computations. However, if you compute a value which is the 
result of a sequence of floating point operations, the error can accumulate  and greatly affect the computa-
tion itself. For example, suppose we were to add 1.23e3 with 1.00e0. Adjusting the numbers so their expo-
nents are the same before the addition produces 1.23e3 + 0.001e3. The sum of these two values, even after 
rounding, is 1.23e3. This might seem perfectly reasonable to you; after all, we can only maintain three-
nificant digits, adding in a small value shouldn’t affect the result at all. However, suppose we were to add 
1.00e0 to 1.23e3 ten times. The first time we add 1.00e0 to 1.23e3 we get 1.23e3. Likewise, we get this same 
result the second, third, fourth, ..., and tenth time we add 1.00e0 to 1.23e3. On the other hand, had w 
1.00e0 to itself ten times, then added the result (1.00e1) to 1.23e3, we would have gotten a different result, 
1.24e3. This is an important thing to know about limited precision arithmetic:

❏ The order of evaluation can effect the accuracy of the result.
You will get more accurate results if the relative magnitudes (that is, the exponents) are close

another. If you are performing a chain calculation involving addition and subtraction, you should atte
group the values appropriately.

Another problem with addition and subtraction is that you can wind up with false precision. Consider 
the computation 1.23e0 - 1.22 e0. This produces 0.01e0. Although this is mathematically equivalent to 
1.00e-2, this latter form suggests that the last two digits are exactly zero. Unfortunately, we’ve only got a 
single significant digit at this time. Indeed, some FPUs or floating point software packages might actually 
insert random digits (or bits) into the L.O. positions. This brings up a second important rule concerning lim-
ited precision arithmetic:

❏ Whenever subtracting two numbers with the same signs or adding two numbers with
different signs, the accuracy of the result may be less than the precision available 
the floating point format.

e±±
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Multiplication and division do not suffer from the same problems as addition and subtraction since 
do not have to adjust the exponents before the operation; all you need to do is add the exponents and multi-
ply the mantissas (or subtract the exponents and divide the mantissas). By themselves, multiplication and 
division do not produce particularly poor results. However, they tend to multiply any error that already exists 
in a value. For example, if you multiply 1.23e0 by two, when you should be multiplying 1.24e0 by two, the 
result is even less accurate. This brings up a third important rule when working with limited precision arith-
metic:

❏ When performing a chain of calculations involving addition, subtraction, multiplica-
tion, and division, try to perform the multiplication and division operations first.

Often, by applying normal algebraic transformations, you can arrange a calculation so the multip
divide operations occur first. For example, suppose you want to compute x*(y+z). Normally you wou
y and z together and multiply their sum by x. However, you will get a little more accuracy if you trans
x*(y+z) to get x*y+x*z and compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying two very large
very small numbers, it is quite possible for overflow  or underflow  to occur. The same situation occurs whe 
dividing a small number by a large number or dividing a large number by a small number. This brings up a 
fourth rule you should attempt to follow when multiplying or dividing values:

❏ When multiplying and dividing sets of numbers, try to arrange the multiplications so 
that they multiply large and small numbers together; likewise, try to divide numbers
that have the same relative magnitudes.

Comparing floating point numbers is very dangerous. Given the inaccuracies present in any co
tion (including converting an input string to a floating point value), you should never compare two floating 
point values to see if they are equal. In a binary floating point format, different computations which produce 
the same (mathematical) result may differ in their least significant bits. For example, adding 1.31e0+1.69e0 
should produce 3.00e0. Likewise, adding 1.50e0+1.50e0 should produce 3.00e0. However, were you to 
compare (1.31e0+1.69e0) against (1.50e0+1.50e0) you might find out that these sums are not equal to one 
another. The test for equality succeeds if and only if all bits (or digits) in the two operands are exactly the 
same. Since this is not necessarily true after two different floating point computations which should produc 
the same result, a straight test for equality may not work.

The standard way to test for equality between floating point numbers is to determine how much error (or 
tolerance) you will allow in a comparison and check to see if one value is within this error range of the othe. 
The straight-forward way to do this is to use a test like the following:

if Value1 >= (Value2-error) and Value1 <= (Value2+error) then …

Another common way to handle this same comparison is to use a statement of the form:

if abs(Value1-Value2) <= error then …

Most texts, when discussing floating point comparisons, stop immediately after discussing the prob 
with floating point equality, assuming that other forms of comparison are perfectly okay with floating point 
numbers. This isn’t true! If we are assuming that x=y if x is within y±error, then a simple bitwise comparison 
of x and y will claim that x<y if y is greater than x but less than y+error. However, in such a case x should 
really be treated as equal to y, not less than y. Therefore, we must always compare two floating point num-
bers using ranges, regardless of the actual comparison we want to perform. Trying to compare two floating 
point numbers directly can lead to an error. To compare two floating point numbers, x and y, against one 
another, you should use one of the following forms:

= if abs(x-y) <= error then …
≠ if abs(x-y) > error then …
< if (x-y) < -error then …
≤ if (x-y) <= error then …
> if (x-y) > error then …
≥ if (x-y) >= -error then …

You must exercise care when choosing the value for error. This should be a value slightly greater than 
the largest amount of error which will creep into your computations. The exact value will depend upon the 
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particular floating point format you use, but more on that a little later. The final rule we will state in this sec-
tion is 

❏ When comparing two floating point numbers, always compare one value to see if it is 
in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values. This text ca
point out some of the major problems and make you aware of the fact that you cannot treat floatin
arithmetic like real arithmetic – the inaccuracies present in limited precision arithmetic can get you int
ble if you are not careful. A good text on numerical analysis or even scientific computing can help fill
details that are beyond the scope of this text. If you are going to be working with floating point arithmein 
any language, you should take the time to study the effects of limited precision arithmetic on your computa-
tions.

HLA’s IF statement does not support boolean expressions involving floating point operands.  Therefore, 
you cannot use statements like “IF( x < 3.141) THEN...” in your programs.  In a later chapter that discuss 
floating point operations on the 80x86 you’ll learn how to do floating point comparisons.

4.2.1 IEEE Floating Point Formats

When Intel planned to introduce a floating point coprocessor for their new 8086 microprocessor, they 
were smart enough to realize that the electrical engineers and solid-state physicists who design chips were 
perhaps, not the best people to do the necessary numerical analysis to pick the best possible binary -
tation for a floating point format. So Intel went out and hired the best numerical analyst they could find to 
design a floating point format for their 8087 FPU. That person then hired two other experts in the field and 
the three of them (Kahn, Coonan, and Stone) designed Intel’s floating point format. They did such a good job 
designing the KCS Floating Point Standard that the IEEE organization adopted this format for the IEEE 
floating point format2. 

To handle a wide range of performance and accuracy requirements, Intel actually introduced three float-
ing point formats: single precision, double precision, and extended precision. The single and double preci-
sion formats corresponded to C’s float and double types or FORTRAN’s real and double precision types 
Intel intended to use extended precision for long chains of computations. Extended precision contain 
extra bits that the calculations could use as guard bits before rounding down to a double precision value 
when storing the result.

The single precision format uses a one’s complement 24 bit mantissa and an eight bit excess-127 expo-
nent. The mantissa usually represents a value between 1.0 to just under 2.0. The H.O. bit of the mantissa is 
always assumed to be one and represents a value just to the left of the binary point3. The remaining 23 man-
tissa bits appear to the right of the binary point. Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The “mmmm…” characters represent the 23 bits of the mantissa. Keep in mind that we are working with
binary numbers here. Therefore, each position to the right of the binary point represents a value (zero
times a successive negative power of two. The implied one bit is always multiplied by 20, which is one. This 
is why the mantissa is always greater than or equal to one. Even if the other mantissa bits are all z
implied one bit always gives us the value one4. Of course, even if we had an almost infinite number of on
bits after the binary point, they still would not add up to two. This is why the mantissa can represent
in the range one to just under two.

Although there are an infinite number of values between one and two, we can only represent eig
lion of them because we use a 23 bit mantissa (the 24th bit is always one). This is the reason for inaccuracy 

2. There were some minor changes to the way certain degenerate operations were handled, but the bit representatio
essentially unchanged.
3. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal n
4. Actually, this isn’t necessarily true. The IEEE floating point format supports denormalized values where the H.O. bit is not
zero. However, we will ignore denormalized values in our discussion.
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in floating point arithmetic – we are limited to 23 bits of precision in computations involving single precision 
floating point values.

The mantissa uses a one’s complement  format rather than two’s complement. This means that the 24 bit 
value of the mantissa is simply an unsigned binary number and the sign bit determines whether thatalue is 
positive or negative. One’s complement numbers have the unusual property that there are two representa-
tions for zero (with the sign bit set or clear). Generally, this is important only to the person designing th 
floating point software or hardware system. We will assume that the value zero always has the sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the exponent portion of the floating point for-
mat comes into play. The floating point format raises two to the power specified by the exponent and then 
multiplies the mantissa by this value. The exponent is eight bits and is stored in an excess-127  format. In 
excess-127 format, the exponent 20 is represented by the value 127 ($7f). Therefore, to convert an exponent 
to excess-127 format simply add 127 to the exponent value. The use of excess-127 format makes it easier to 
compare floating point values. The single precision floating point format takes the form shown in Figure 4.2. 

Figure 4.2 Single Precision (32-bit) Floating Point Format

With a 24 bit mantissa, you will get approximately 6-1/2 digits of precision (one half digit of precision 
means that the first six digits can all be in the range 0..9 but the seventh digit can only be in the range 0.. 
where x<9 and is generally close to five). With an eight bit excess-127 exponent, the dynamic range of singl 
precision floating point numbers is approximately 2±128 or about 10±38.

Although single precision floating point numbers are perfectly suitable for many applications, the 
dynamic range is somewhat limited for many scientific applications and the very limited precision is unsuit-
able for many financial, scientific, and other applications. Furthermore, in long chains of computations 
limited precision of the single precision format may introduce serious error.

The double precision format helps overcome the problems of single precision floating point. Using 
twice the space, the double precision format has an 11-bit excess-1023 exponent and a 53 bit mantissa (wit 
an implied H.O. bit of one) plus a sign bit. This provides a dynamic range of about 10±308and 14-1/2 digits of 
precision, sufficient for most applications. Double precision floating point values take the form shown in 
Figure 4.3.

Figure 4.3 64-Bit Double Precision Floating Point Format

In order to help ensure accuracy during long chains of computations involving double precision floating 
point numbers, Intel designed the extended precision format. The extended precision format uses 80 bit 
Twelve of the additional 16 bits are appended to the mantissa, four of the additional bits are appende 

31                             23                            15                              7                           0

Mantissa BitsExponent Bi tsSign
Bi t

1

The 24th mantissa bit is
implied and is always one.

 63                                  52                                                                     7                              0

Mantissa BitsExponent BitsSign
Bit

1

The 53rd  mantissa bit is
implied and is always one.
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end of the exponent. Unlike the single and double precision values, the extended precision format’s mantissa 
does not have an implied H.O. bit which is always one. Therefore, the extended precision format provides a 
64 bit mantissa, a 15 bit excess-16383 exponent, and a one bit sign. The format for the extended precision 
floating point value is shown in Figure 4.4:

Figure 4.4 80-bit Extended Precision Floating Point Format

On the FPUs all computations are done using the extended precision form. Whenever you load a single 
or double precision value, the FPU automatically converts it to an extended precision value. Likewise, when 
you store a single or double precision value to memory, the FPU automatically rounds the value down to the 
appropriate size before storing it. By always working with the extended precision format, Intel guarantees 
large number of guard bits are present to ensure the accuracy of your computations. Some texts erroneously 
claim that you should never use the extended precision format in your own programs, because Intel only 
guarantees accurate computations when using the single or double precision formats. This is foolish. By per-
forming all computations using 80 bits, Intel helps ensure (but not guarantee) that you will get full 32 or 6 
bit accuracy in your computations. Since the FPUs do not provide a large number of guard bits in 80 bi 
computations, some error will inevitably creep into the L.O. bits of an extended precision computation 
However, if your computation is correct to 64 bits, the 80 bit computation will always provide at least 64 
accurate bits. Most of the time you will get even more. While you cannot assume that you get an accurate 
bit computation, you can usually do better than 64 when using the extended precision format.

To maintain maximum precision during computation, most computations use normalized values. A nor-
malized floating point value is one whose H.O. mantissa bit contains one. Almost any non-normalized value 
can be normalized by shifting the mantissa bits to the left and decrementing the exponent until a one appears 
in the H.O. bit of the mantissa. Remember, the exponent is a binary exponent. Each time you increment th 
exponent, you multiply the floating point value by two. Likewise, whenever you decrement the exponent, 
you divide the floating point value by two. By the same token, shifting the mantissa to the left one bit pos-
tion multiplies the floating point value by two; likewise, shifting the mantissa to the right divides the floating 
point value by two. Therefore, shifting the mantissa to the left one position and  decrementing the exponent 
does not change the value of the floating point number at all.

Keeping floating point numbers normalized is beneficial because it maintains the maximum number  
bits of precision for a computation. If the H.O. bits of the mantissa are all zero, the mantissa has thay 
fewer bits of precision available for computation. Therefore, a floating point computation will be more accu-
rate if it involves only normalized values.

There are two important cases where a floating point number cannot be normalized. The value 0.0 is a 
special case. Obviously it cannot be normalized because the floating point representation for zero has no o 
bits in the mantissa. This, however, is not a problem since we can exactly represent the value zero with only 
a single bit. 

The second case is when we have some H.O. bits in the mantissa which are zero but the biased exponent 
is also zero (and we cannot decrement it to normalize the mantissa). Rather than disallow certain small val-
ues, whose H.O. mantissa bits and biased exponent are zero (the most negative exponent possible), the IEEE 
standard allows special denormalized  values to represent these smaller values5. Although the use of denor-
malized values allows IEEE floating point computations to produce better results than if underflow occurred, 
keep in mind that denormalized values offer less bits of precision.

5. The alternative would be to underflow the values to zero.

79                                  64                                                                     7                              0
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Since the FPU always converts single and double precision values to extended precision, extended pre-
cision arithmetic is actually faster than single or double precision. Therefore, the expected performance ben-
efit of using the smaller formats is not present on these chips. However, when designing the Pentium/586 
CPU, Intel redesigned the built-in floating point unit to better compete with RISC chips. Most RISC ch 
support a native 64 bit double precision format which is faster than Intel’s extended precision format. There-
fore, Intel provided native 64 bit operations on the Pentium to better compete against the RISC chips. There-
fore, the double precision format is the fastest on the Pentium and later chips.

4.2.2 HLA Support for Floating Point Values

HLA provides several data types and library routines to support the use of floating point data in your 
assembly language programs.  These include built-in types to declare floating point variables as well as rou-
tines that provide floating point input, output, and conversion.

Perhaps the best place to start when discussing HLA’s floating point facilities is with a description of 
floating point literal constants.  HLA floating point constants allow the following syntax:

• An optional “+” or “-” symbol, denoting the sign of the mantissa (if this is not present, HLA 
assumes that the mantissa is positive), 

• Followed by one or more decimal digits, 
• Optionally followed by a decimal point and one or more decimal digits,
• Optionally followed by an “e” or “E”,  optionally followed by a sign (“+” or “-”) and one or 

more decimal digits.

Note: the decimal point or the “e”/”E” must be present in order to differentiate this value from an inte
unsigned literal constant.  Here are some examples of legal literal floating point constants:

1.234 3.75e2 -1.0 1.1e-1 1e+4 0.1 -123.456e+789 +25e0

Notice that a floating point literal constant cannot begin with a decimal point; it must begin with a dec
digit so you must use “0.1” to represent “.1” in your programs.  

HLA also allows you to place an underscore character (“_”) between any two consecutive decima
in a floating point literal constant.  You may use the underscore character in place of a comma (or ot
guage-specific separator character) to help make your large floating point numbers easier to read.  
some examples:

1_234_837.25 1_000.00 789_934.99 9_999.99

To declare a floating point variable you use the real32, real64, or real80 data types.  Like their integer 
and unsigned brethren, the number at the end of these data type declarations specifies the number of bits 
used for each type’s binary representation.  Therefore, you use real32 to declare single precision real values, 
real64 to declare double precision floating point values, and real80 to declare extended precision floating 
point values.  Other than the fact that you use these types to declare floating point variables rather than inte-
gers, their use is nearly identical to that for int8, int16, int32, etc.  The following examples demonstrate thes 
declarations and their syntax:

static

fltVar1: real32;
fltVar1a: real32 := 2.7;
pi: real32 := 3.14159;
DblVar: real64;
DblVar2: real64 := 1.23456789e+10;
XPVar: real80;
XPVar2: real80 := -1.0e-104;
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To output a floating point variable in ASCII form, you would use one of the stdout.putr32, std-
out.putr64, or stdout.putr80 routines.  These procedures display a number in decimal notation, that  
string of digits, an optional decimal point and a closing string of digits.  Other than their names, thes 
routines use exactly the same calling sequence.  Here are the calls and parameters for each of these r

stdout.putr80( r:real80; width:uns32; decpts:uns32 );
stdout.putr64( r:real64; width:uns32; decpts:uns32 );
stdout.putr32( r:real32; width:uns32; decpts:uns32 );

The first parameter to these procedures is the floating point value you wish to print.  The size of this 
parameter must match the procedure’s name (e.g., the r parameter must be an 80-bit extended precision 
floating point variable when calling the stdout.putr80 routine).  The second parameter specifies the field 
width for the output text;  this is the number of print positions the number will require when the proce 
displays it.  Note that this width must include print positions for the sign of the number and the de 
point.  The third parameter specifies the number of print positions after the decimal point.  For example,

stdout.putr32( pi, 10, 4 );

displays the value

_ _ _ _ 3.1416

(the underscores represent leading spaces in this example).

Of course, if the number is very large or very small, you will want to use scientific notation rathe
decimal notation for your floating point numeric output.  The HLA Standard Library stdout.pute32, std-
out.pute64, and stdout.pute80 routines provide this facility.  These routines use the following procedure pro-
totypes:

stdout.pute80( r:real80; width:uns32 );
stdout.pute64( r:real64; width:uns32 );
stdout.pute32( r:real32; width:uns32 );

Unlike the decimal output routines, these scientific notation output routines do not require a thi 
parameter specifying the number of digits after the decimal point to display.  The width parameter, indi-
rectly, specifies this value since all but one of the mantissa digits always appears to the right of the decim 
point.  These routines output their values in decimal notation, similar to the following:

1.23456789e+10 -1.0e-104 1e+2

You can also output floating point values using the HLA Standard Library stdout.put routine.  If you 
specify the name of a floating point variable in the stdout.put parameter list, the stdout.put code will output 
the value using scientific notation.  The actual field width varies depending on the size of the floating point 
variable (the stdout.put routine attempts to output as many significant digits as possible, in this case).  Exam-
ple:

stdout.put( “XPVar2 = “, XPVar2 );

If you specify a field width specification, by using a colon followed by a signed integer value, then the 
stdout.put routine will use the appropriate stdout.puteXX routine to display the value.  That is, the number 
will still appear in scientific notation, but you get to control the field width of the output value.  Like the field 
width for integer and unsigned values, a positive field width right justifies the number in the specified field, a 
negative number left justifies the value.  Here is an example that prints the XPVar2 variable using ten print 
positions:

stdout.put( “XPVar2 = “, XPVar2:10 );

If you wish to use stdout.put to print a floating point value in decimal notation, you need to use the fo-
lowing syntax:

Variable_Name : Width : DecPts
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Note that the DecPts field must be a non-negative integer value.  

When stdout.put contains a parameter of this form, it calls the corresponding stdout.putrXX routine to 
display the specified floating point value.  As an example,  consider the following call:

stdout.put( “Pi = “, pi:5:3 );

The corresponding output is

3.142

The HLA Standard Library provides several other useful routines you can use when outputting floating 
point values.  Consult the HLA Standard Library reference manual for more information on these rout

The HLA Standard Library provides several routines to let you display floating point values in a wide 
variety of formats.  In contrast, the HLA Standard Library only provides two routines to support floating 
point input: stdin.getf() and stdin.get().  The stdin.getf() routine requires the use of the 80x86 FPU stack 
hardware component that this chapter is not going to cover.  Therefore, this chapter will defer the discussio 
of the stdin.getf() routine until the chapter on arithmetic, later in this text.  Since the stdin.get() routine pro-
vides all the capabilities of the stdin.getf() routine, this deference will not prove to be a problem.

You’ve already seen the syntax for the stdin.get() routine;  its parameter list simply contains a list o 
variable names.  Stdin.get() reads appropriate values for the user for each of the variables appearing in the 
parameter list.  If you specify the name of a floating point variable, the stdin.get() routine automatically 
reads a floating point value from the user and stores the result into the specified variable.  The following 
example demonstrates the use of this routine:

stdout.put( “Input a double precision floating point value: “ );
stdin.get( DblVar );

Warning: This section has discussed how you would declare floating point variables and 
how you would input and output them.  It did not discuss arithmetic.  Floating point arith-
metic is different than integer arithmetic;  you cannot use the 80x86 ADD and SUB 
instructions to operate on floating point values.  Floating point arithmetic will be the sub-
ject of a later chapter in this text.

4.3 Binary Coded Decimal (BCD) Representation

Although the integer and floating point formats cover most of the numeric needs of an average program, 
there are some special cases where other numeric representations are convenient.  In this section we’ll dis-
cuss the Binary Coded Decimal (BCD) format since the 80x86 CPU provides a small amount of hardware 
support for this data representation.

BCD values are a sequence of nibbles with each nibble representing a value in the range zero through 
nine.  Of course you can represent values in the range 0..15 using a nibble;  the BCD format, however, uses 
only 10 of the possible 16 different values for each nibble.

Each nibble in a BCD value represents a single decimal digit.  Therefore, with a single byte (i.e., two 
digits) we can represent values containing two decimal digits, or values in the range 0..99.  With a word, we 
can represent values having four decimal digits, or values in the range 0..9999.  Likewise, with a double 
word we can represent values with up to eight decimal digits (since there are eight nibbles in  a double ord 
value).
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Figure 4.5 BCD Data Representation in Memory

As you can see, BCD storage isn’t particularly memory efficient.  For example, an eight-bit BCD vari-
able can represent values in the range 0..99 while that same eight bits, when holding a binary value, can rep-
resent values in the range 0..255.  Likewise, a 16-bit binary value can represent values in the range 0..65535 
while a 16-bit BCD value can only represent about 1/6 of those values (0..9999).  Inefficient storage isn’t the 
only problem.   BCD calculations tend to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the BCD format.  The BCD for-
mat does have two saving graces: it’s very easy to convert BCD values between the internal numeric repr-
sentation and their string representation;  also, its very easy to encode multi-digit decimal values in hardware 
(e.g., using a “thumb wheel” or dial) using BCD than it is using binary.  For these two reasons, you’re likely 
to see people using BCD in embedded systems (e.g., toaster ovens and alarm clocks) but rarely in general 
purpose computer software.

A few decades ago people mistakenly thought that calculations involving BCD (or just ‘decimal’) arith-
metic was more accurate than binary calculations.  Therefore, they would often perform ‘important’ calcula-
tions, like those involving dollars and cents (or other monetary units) using decimal-based arithmetic.  While 
it is true that certain calculations can produce more accurate results in BCD, this statement is not true-
eral.  Indeed, for most calculations (even those involving fixed point decimal arithmetic), the binary repre-
sentation is more accurate.  For this reason, most modern computer programs represent all values in a binary 
form.  For example, the Intel x86 floating point unit (FPU) supports a pair of instructions for loading a 
storing BCD values.  Internally, however, the FPU converts these BCD values to binary and performs all cal-
culations in binary.  It only uses BCD as an external data format (external to the FPU, that is).  This generally 
produces more accurate results and requires far less silicon than having a separate coprocessor that suppo 
decimal arithmetic.

This text will take up the subject of BCD arithmetic in a later chapter.  Until then, you can safely ignore 
BCD  unless you find yourself converting a COBOL program to assembly language (which is qu 
unlikely).

4.4 Characters

Perhaps the most important data type on a personal computer is the character data type.  The term “char-
acter” refers to a human or machine readable symbol that is typically a non-numeric entity.  In general, the 
term “character” refers to any symbol that you can normally type on a keyboard (including some symbols 
that may require multiple key presses to produce) or display on a video display.  Many beginners often con-
fuse the terms “character” and “alphabetic character.”  These terms are not the same.  Punctuation symb 
numeric digits, spaces, tabs, carriage returns (enter), other control characters, and other special sym 
also characters.  When this text uses the term “character” it refers to any of these characters, not just th 
alphabetic characters.  When this text refers to alphabetic characters, it will use phrases like “alphabetic 
characters,”  “upper case characters,” or “lower case characters.”6.

7 6 5 4 3 2 1     0

H.O. Nibble          L.O. Nibble
(H.O. Digit)          (L.O. Digit)

   0..9                        0..9
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Another common problem beginners have when they first encounter the character data type is differenti-
ating between numeric characters and numbers.  The character ‘1’ is distinct and different from the value 
one.  The computer (generally) uses two different internal, binary, representations for numeric characte 
(‘0’, ‘1’, ..., ‘9’) v ersus the numeric values zero through nine.  You must take care not to confuse the two.

Most computer systems use a one or two byte sequence to encode the various characters in binary form 
Windows and Linux certainly fall into this category, using either the ASCII or Unicode encodings for char-
acters.  This section will discuss the ASCII character set and the character declaration facilities that HLA 
provides.

4.4.1 The ASCII Character Encoding

The ASCII (American Standard Code for Information Interchange) Character set maps 128 textual char-
acters to the unsigned integer values 0..127 ($0..$7F).  Internally, of course, the computer represents every-
thing using binary numbers;  so it should come as no surprise that the computer also uses binary values to 
represent non-numeric entities such as characters.  Although the exact mapping of characters to numeric val-
ues is arbitrary and unimportant, it is important to use a standardized code for this mapping since y 
need to communicate with other programs and peripheral devices and you need to talk the same “languag 
as these other programs and devices.  This is where the ASCII code comes into play;  it is a standardize 
code that nearly everyone has agreed upon.  Therefore, if you use the ASCII code 65 to represent the chara-
ter “A” then you know that some peripheral device (such as a printer) will correctly interpret this value as the 
character “A” whenever you transmit data to that device.

You should not get the impression that ASCII is the only character set in use on computer systems.  I 
uses the EBCDIC character set family on many of its mainframe computer systems.  Another common char-
acter set in use is the Unicode character set.  Unicode is an extension to the ASCII character set that uses 1 
bits rather than seven to represent characters.  This allows the use of 65,536 different characters in the char-
acter set, allowing the inclusion of most symbols in the world’s different languages into a single unified 
character set.

Since the ASCII character set provides only 128 different characters and a byte can represent 256 differ-
ent values,  an interesting question arises: “what do we do with the values 128..255 that one could store in 
a byte value when working with character data?”  One answer is to ignore those extra values.  That will be 
the primary approach of this text.  Another possibility is to extend the ASCII character set and add an add-
tional 128 characters to the character set.  Of course, this would tend to defeat the whole purpose of having a 
standardized character set unless you could get everyone to agree upon the extensions.  That is a difficult 
task.  

When IBM first created their IBM-PC, they defined these extra 128 character codes to contain various 
non-English alphabetic characters, some line drawing graphics characters, some mathematical symbols,  
several other special characters.  Since IBM’s PC was the foundation for what we typically call a PC toda, 
that character set has become a pseudo-standard on all IBM-PC compatible machines.  Even on modern 
machines, which are not IBM-PC compatible and cannot run early PC software, the IBM extended character 
set still survives.  Note, however, that this PC character set (an extension of the ASCII character set) is not 
universal.  Most printers will not print the extended characters when using native fonts and many programs 
(particularly in non-English countries) do not use those characters for the upper 128 codes in an e 
value.  For these reasons, this text will generally stick to the standard 128 character ASCII character set. 
However, a few examples and programs in this text will use the IBM PC extended character set, particularl 
the line drawing graphic characters (see Appendix B).

Should you need to exchange data with other machines which are not PC-compatible, you have only 
two alternatives: stick to standard ASCII or ensure that the target machine supports the extended IBM-PC 
character set. Some machines, like the Apple Macintosh, do not provide native support for the extended 
IBM-PC character set; however you may obtain a PC font which lets you display the extended character set 

6. Upper and lower case characters are always alphabetic characters within this text.
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Other machines have similar capabilities. However, the 128 characters in the standard ASCII character set 
are the only ones you should count on transferring from system to system.

Despite the fact that it is a “standard”, simply encoding your data using standard ASCII characters does 
not guarantee compatibility across systems. While it’s true that an “A” on one machine is most likely an “A”  
on another machine, there is very little standardization across machines with respect to the use of the co 
characters. Indeed, of the 32 control codes plus delete, there are only four control codes commo-
ported – backspace (BS), tab, carriage return (CR), and line feed (LF). Worse still, different machines often 
use these control codes in different ways. End of line is a particularly troublesome example. Windows, 
MS-DOS, CP/M, and other systems mark end of line by the two-character sequence CR/LF. Apple Macin-
tosh, and many other systems mark the end of line by a single CR character. Linux, BeOS, and other UNIX 
systems mark the end of a line with a single LF character. Needless to say, attempting to exchange simple 
text files between such systems can be an experience in frustration. Even if you use standard ASCII charac-
ters in all your files on these systems, you will still need to convert the data when exchanging files between 
them. Fortunately, such conversions are rather simple.

Despite some major shortcomings, ASCII data is the standard for data interchange across computer s-
tems and programs. Most programs can accept ASCII data; likewise most programs can produce ASCII data. 
Since you will be dealing with ASCII characters in assembly language, it would be wise to study the layou 
of the character set and memorize a few key ASCII codes (e.g., “0”, “A”, “a”, etc.).

The ASCII character set (excluding the extended characters defined by IBM) is divided into four groups 
of 32 characters. The first 32 characters, ASCII codes 0 through $1F (31), form a special set of non-print 
characters called the control characters. We call them control characters because they perform various 
printer/display control operations rather than displaying symbols. Examples include carriage return, which 
positions the cursor to the left side of the current line of characters7, line feed (which moves the cursor down 
one line on the output device), and back space (which moves the cursor back one position to the left). Unfo-
tunately, different control characters perform different operations on different output devices. There is very 
little standardization among output devices. To find out exactly how a control character affects a particular 
device, you will need to consult its manual. 

The second group of 32 ASCII character codes comprise various punctuation symbols, special chara-
ters, and the numeric digits. The most notable characters in this group include the space character (A 
code $20) and the numeric digits (ASCII codes $30..$39). Note that the numeric digits differ from their 
numeric values only in the H.O. nibble. By subtracting $30 from the ASCII code for any particular digit you 
can obtain the numeric equivalent of that digit. 

The third group of 32 ASCII characters contains the upper case alphabetic characters. The ASCII codes 
for the characters “A”..”Z” lie in the range $41..$5A (65..90). Since there are only 26 different alphabetic 
characters, the remaining six codes hold various special symbols. 

The fourth, and final, group of 32 ASCII character codes represent the lower case alphabetic symbols 
five additional special symbols, and another control character (delete). Note that the lower case character 
symbols use the ASCII codes $61..$7A. If you convert the codes for the upper and lower case characters to 
binary, you will notice that the upper case symbols differ from their lower case equivalents in exactly one bit 
position. For example, consider the character code for “E” and “e” in the following figure:

7. Historically, carriage return refers to the paper carriage used on typewriters. A carriage return consisted of physically m
ing the carriage all the way to the right so that the next character typed would appear at the left hand side of the pap
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Figure 4.6 ASCII Codes for “E” and “e”

The only place these two codes differ is in bit five. Upper case characters always contain a zero in bit 
five; lower case alphabetic characters always contain a one in bit five. You can use this fact to quickly convert 
between upper and lower case. If you have an upper case character you can force it to lower case by setting 
bit five to one. If you have a lower case character and you wish to force it to upper case, you can do so b-
ting bit five to zero. You can toggle an alphabetic character between upper and lower case by simply invert-
ing bit five.

Indeed, bits five and six determine which of the four groups in the ASCII character set you’re in:

So you could, for instance, convert any upper or lower case (or corresponding special) character to its e-
alent control character by setting bits five and six to zero. 

Consider, for a moment, the ASCII codes of the numeric digit characters:

Table 9: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control Characters

0 1 Digits & Punctuation

1 0 Upper Case & Special

1 1 Lower Case & Special

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

“0” 48 $30

“1” 49 $31

“2” 50 $32

“3” 51 $33

7 6 5 4 3 2 1     0

7 6 5 4 3 2 1     0

0    1 0 0    0    1 0    1

0    1 1 0    0    1 0    1

E

e
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The decimal representations of these ASCII codes are not very enlightening. However, the hexadecimal 
representation of these ASCII codes reveals something very important – the L.O. nibble of the ASCII code is 
the binary equivalent of the represented number. By stripping away (i.e., setting to zero) the H.O. nibble of  
numeric character, you can convert that character code to the corresponding binary representation. -
versely, you can convert a binary value in the range 0..9 to its ASCII character representation by simply se-
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the H.O. bits to 
likewise, you can use the logical-OR operation to force the H.O. bits to %0011 (three).

Note that you cannot convert a string of numeric characters to their equivalent binary representation by 
simply stripping the H.O. nibble from each digit in the string. Converting 123 ($31  $32  $33) in this fashion 
yields three bytes: $010203, not the correct value which is $7B. Converting a string of digits to an integer 
requires more sophistication than this; the conversion above works only for single digits.

4.4.2 HLA Support for ASCII Characters

Although you could easily store character values in byte variables and use the corresponding nume 
equivalent ASCII code when using a character literal in your program, such agony is unnecessary - HLA 
provides good support for character variables and literals in your assembly language programs.

Character literal constants in HLA take one of two forms: a single character surrounded by apostrop 
or a pound symbol (“#”) followed by a numeric constant in the range 0..127 specifying the ASCII code of 
the character.  Here are some examples:

‘A’ #65 #$41 #%0100_0001

Note that these examples all represent the same character (‘A’) since the ASCII code of ‘A’ is 65.

With a single exception, only a single character may appear between the apostrophes in a literal
ter constant.  That single exception is the apostrophe character itself.  If you wish to create an apostr
eral constant, place four apostrophes in a row (i.e., double up the apostrophe inside the surr
apostrophes), i.e.,

’’’’

The pound sign operator (“#”) must precede a legal HLA numeric constant (either decimal, hexadecimal 
or binary as the examples above indicate).  In particular, the pound sign is not a generic character conversion 
function;  it cannot precede registers or variable names, only constants.  As a general rule, you should always 
use the apostrophe form of the character literal constant for graphic characters (that is, those that a-
able or displayable).  Use the pound sign form for control characters (that are invisible, or do funny things 
when you print them) or for extended ASCII characters that may not display or print properly within yo 
source code.

“4” 52 $34

“5” 53 $35

“6” 54 $36

“7” 55 $37

“8” 56 $38

“9” 57 $39

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal
Page 100 © 2001, By Randall Hyde Beta Draft - Do not distribute



More Data Representation

rams.
urrounded

e
ter

nip

rd output

f 

ually 
ost 

 

n this 
Notice the difference between a character literal constant and a string literal constant in your prog 
Strings are sequences of zero or more characters surrounded by quotation marks, characters are s 
by apostrophes.  It is especially important to realize that

‘A’ ≠ “A”
The character constant ‘A’ and the string containing the single character “A” have two completely differ-

ent internal representations.  If you attempt to use a string containing a single character where HLA xpects 
a character constant, HLA will report an error.  Strings and string constants will be the subject of a la 
chapter.

To declare a character variable in an HLA program, you use the char data type.  The following declara-
tion, for example, demonstrates how to declare a variable named UserInput:

static
UserInput: char;

This declaration reserves one byte of storage that you could use to store any character value (including 
eight-bit extended ASCII characters).  You can also initialize character variables as the following example 
demonstrates:

static

TheCharA: char := ‘A’;
ExtendedChar char := #128;

Since character variables are eight-bit objects, you can manipulate them using eight-bit registers.  You 
can move character variables into eight-bit registers and you can store the value of an eight-bit register into a 
character variable.

The HLA Standard Library provides a handful of routines that you can use for character I/O and ma-
ulation;  these include stdout.putc, stdout.putcSize, stdout.put, stdin.getc, and stdin.get.

The stdout.putc routine uses the following calling sequence:

stdout.putc( chvar );

This procedure outputs the single character parameter passed to it as a character to the standa 
device.  The parameter may be any char constant or variable, or a byte variable or register8.

The stdout.putcSize routine provides output width control when displaying character variables.  The 
calling sequence for this procedure is

stdout.putcSize( charvar, widthInt32, fillchar );

This routine prints the specified character (parameter c) using at least width print positions9.  If the absolute 
value of width is greater than one, then stdout.putcSize prints the fill  character as padding.  If the value o
width is positive, then stdout.putcSize prints the character right justified in the print field;  if width is nega-
tive, then stdout.putcSize prints the character left justified in the print field.  Since character output is us
left justified in a field, the width value will normally be negative for this call.  The space character is the m
common fill value.

You can also print character values using the generic stdout.put routine.  If a character variable appears 
in the stdout.put parameter list, then stdout.put will automatically print it as a character value, e.g.,

stdout.put( “Character c = ‘”, c, “‘”, nl );

You can read characters from the standard input using the stdin.getc and stdin.get routines.  The 
stdin.getc routine does not have any parameters.  It reads a single character from the standard input buffer 
and returns this character in the AL register.  You may then store the character value away or otherwise 

8. If you specify a byte variable or a byte-sized register as the parameter, the stdout.putc routine will output the character
whose ASCII code appears in the variable or register.
9. The only time stdout.putcSize uses more print positions than you specify is when you specify zero as the width;  the
routine uses exactly one print position.
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manipulate the character in the AL register.  The following program reads a single character from the us, 
converts it to upper case if it is a lower case character, and then displays the character:

program charInputDemo;
#include( “stdlib.hhf” );
static
    c:char;
    
begin charInputDemo;

    stdout.put( “Enter a character: “ );
    stdin.getc();
    if( al >= ‘a’ ) then
    
        if( al <= ‘z’ ) then
        
            and( $5f, al );
            
        endif;
        
    endif;
    stdout.put
    ( 
        “The character you entered, possibly “, nl,
        “converted to upper case, was ‘”
    );
    stdout.putc( al );
    stdout.put( “‘”, nl );
   
end charInputDemo;

Program 4.1 Character Input Sample

You can also use the generic stdin.get routine to read character variables from the user.  If a stdin.get 
parameter is a character variable, then the stdin.get routine will read a character from the user and store  
character value into the specified variable.  Here is the program above rewritten to use the stdin.get routine:

program charInputDemo2;
#include( “stdlib.hhf” );
static
    c:char;
    
begin charInputDemo2;

    stdout.put( “Enter a character: “ );
    stdin.get(c);
    if( c >= ‘a’ ) then
    
        if( c <= ‘z’ ) then
        
            and( $5f, c );
            
        endif;
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n,
    endif;
    stdout.put
    ( 
        “The character you entered, possibly “, nl,
        “converted to upper case, was ‘”,
        c,
        “‘”, nl 
    );
   
end charInputDemo2;

Program 4.2 Stdin.get Character Input Sample

As you may recall from the last chapter, the HLA Standard Library buffers its input.  Whenever you 
read a character from the standard input using stdin.getc or stdin.get, the library routines read the next avail-
able character from the buffer;  if the buffer is empty, then the program reads a new line of text from the user 
and returns the first character from that line.  If you want to guarantee that the program reads a new line of 
text from the user when you read a character variable, you should call the stdin.flushInput routine before 
attempting to read the character.  This will flush the current input buffer and force the input of a new line of 
text on the next input (which should be your stdin.getc or stdin.get call).

The end of line is problematic.  Different operating systems handle the end of line differently on output 
versus input.  From the console device, pressing the ENTER key signals the end of a line;  however, when 
reading data from a file you get an end of line sequence which is typically a line feed or a carriage retur 
feed pair.  To help solve this problem, HLA’s Standard Library provides an “end of line” function.  This pro-
cedure returns true (one) in the AL register if all the current input characters have been exhausted, it returns 
false (zero) otherwise.  The following sample program demonstrates the use of the stdin.eoln function.

program eolnDemo2;
#include( “stdlib.hhf” );
begin eolnDemo2;

    stdout.put( “Enter a short line of text: “ );
    stdin.flushInput();
    repeat
    
        stdin.getc();
        stdout.putc( al );
        stdout.put( “=$”, al, nl );
        
    until( stdin.eoln() );
    
end eolnDemo2;

Program 4.3 Testing for End of Line Using Stdin.eoln

The HLA language and the HLA Standard Library provide many other procedures and additional sup-
port for character objects.  Later chapters in this textbook, as well as the HLA reference documentatio 
describe how to use these features.
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4.4.3 The ASCII Character Set

The following table lists the binary, hexadecimal, and decimal representations for each of the 128 ASCII 
character codes.

Table 11: ASCII Character Set

Binary Hex Decimal  Character

0000_0000 00 0 NULL

0000_0001 01 1  ctrl A

0000_0010 02 2  ctrl B

0000_0011 03 3  ctrl C

0000_0100 04 4  ctrl D

0000_0101 05 5  ctrl E

0000_0110 06 6  ctrl F

0000_0111 07 7  bell

0000_1000 08 8  backspace

0000_1001 09 9  tab

0000_1010 0A 10  line feed

0000_1011 0B 11  ctrl K

0000_1100 0C 12  form feed

0000_1101 0D 13  return

0000_1110 0E 14  ctrl N

0000_1111 0F 15  ctrl O

0001_0000 10 16  ctrl P

0001_0001 11 17  ctrl Q

0001_0010 12 18  ctrl R

0001_0011 13 19  ctrl S

0001_0100 14 20  ctrl T

0001_0101 15 21  ctrl U

0001_0110 16 22  ctrl V

0001_0111 17 23  ctrl W
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0001_1000 18 24  ctrl X

0001_1001 19 25  ctrl Y

0001_1010 1A 26  ctrl Z

0001_1011 1B 27  ctrl [

0001_1100 1C 28  ctrl \

0001_1101 1D 29  Esc

0001_1110 1E 30  ctrl ^

0001_1111 1F 31  ctrl _

0010_0000 20 32  space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41 )

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

Table 11: ASCII Character Set

Binary Hex Decimal  Character
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0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

Table 11: ASCII Character Set

Binary Hex Decimal  Character
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0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93 ]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

Table 11: ASCII Character Set

Binary Hex Decimal  Character
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4.5 The UNICODE Character Set

Although the ASCII character set is, unquestionably, the most popular character representation on co-
puters, it is certainly not the only format around.  For example, IBM uses the EBCDIC code on many of its 
mainframe and minicomputer lines.  Since EBCDIC appears mainly on IBM’s big iron and you’ll rarely 
encounter it on personal computer systems, we will not consider that character set in this text.  Another char-
acter representation that is becoming popular on small computer systems (and large ones, for that matter) is 
the Unicode character set.  Unicode overcomes two of ASCII’s greatest limitations: the limited characte 
space (i.e., a maximum of 128/256 characters in an eight-bit byte) and the lack of international (beyond the 
USA) characters.

Unicode uses a 16-bit word to represent a single character.  Therefore, Unicode supports up to 65,53 
different character codes.  This is obviously a huge advance over the 256 possible codes we can repres 
with an eight-bit byte.  Unicode is upwards compatible from ASCII.  Specifically, if the H.O. 17 bits of a 

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127 �

Table 11: ASCII Character Set

Binary Hex Decimal  Character
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Unicode character contain zero, then the L.O. seven bits represent the same character as the ASCII character 
with the same character code.  If the H.O. 17 bits contain some non-zero value, then the character represen 
some other value.  If you’re wondering why so many different character codes are necessary, simply note 
that certain Asian character sets contain 4096 characters (at least, their Unicode subset).

This text will stick to the ASCII character set except for a few brief mentions of Unicode here and ther 
Eventually, this text may have to eliminate the discussion of ASCII in favor of Unicode since many new 
operating systems are using Unicode internally (and convert to ASCII as necessary).  Unfortunately, many 
string algorithms are not as conveniently written for Unicode as for ASCII (especially character set func-
tions) so we’ll stick with ASCII in this text as long as possible.

4.6 Other Data Representations

Of course, we can represent many different objects other than numbers and characters in a comp 
system.  The following subsections provide a brief description of the different real-world data types you 
might encounter.

4.6.1 Representing Colors on a Video Display

As you’re probably aware, color images on a computer display are made up of a series of dots known as 
pixels (which is short for “picture elements.”).  Dif ferent display modes (depending on the capability of t 
display adapter) use different data representations for each of these pixels.  The one thing in common 
between these data types is that they control the mixture of the three additive primary colors (red, green, and 
blue) to form a specific color on the display.  The question, of course, is how much of each of these colors d 
they mix together?

Color depth is the term video card manufacturers use to describe how much red, green, and blue they 
mix together for each pixel.  Modern video cards generally provide three color depths of eight, sixteen, o 
twenty-four bits, allowing 256, 65536, or over 16 million colors per pixel on the display.  This produces 
images that are somewhat coarse and grainy (eight-bit images) to “Polaroid quality” (16-bit images), on u 
to “photographic quality” (24-bit images)10. 

One problem with these color depths is that two of the three formats do not contain a number of bits t 
is evenly divisible by three.  Therefore, in each of these formats at least one of the three primary color 
have fewer bits than the others.  For example, with an eight-bit color depth, two of the colors can have three 
bits (or eight different shades) associated with them while one of the colors must have only two bits (or four 
shades).  Therefore, when distributing the bits there are three formats possible: 2-3-3 (two bits red, three bits 
green, and three bits blue), 3-2-3, or 3-3-2.  Likewise, with a 16 bit color depth, two of the three colors can 
have five bits while the third color can have six bits.  This lets us generate three different palettes using the 
bit values 5-5-6, 5-6-5, or 6-5-5.  For 24-bit displays, each primary color can have eight bits, so there is an 
even distribution of the colors for each pixel.

A 24-bit display produces amazingly good results.  A 16-bit display produces okay images.  Eight-b 
displays, to put it bluntly, produce horrible photographic images (they do produce good synthetic image 
like those you would manipulate with a draw program).  To produce better images when using an eight- 
display, most cards provide a hardware palette.   A palette is nothing more than an array of 24-bit values con-
taining 256 elements11.  The system uses the eight-bit pixel value as an index into this array of 256 values 
and displays the color associated with the 24-bit entry in the palette table.  Although the display can still dis-

10. Some graphic artists would argue that 24 bit images are not of a sufficient quality.  There are some display/printerr 
devices capable of working with 32-bit, 36-bit, and even 48-bit images;  if, of course, you’re willing to pay for them.
11. Actually, the color depth of each palette entry is not necessarily fixed at 24 bits.  Some display devices, for exam 
18-bit entries in their palette.
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play only 256 different colors at one time, the palette mechanism lets users select exactly which colors they 
want to display.  For example, they could display 250 shades of blue and six shades of purple if such a -
ture produces a better image for them.

Figure 4.7 Extending the Number of Colors Using a Palette

Unfortunately, the palette scheme only works for displays with minimal color depths.  For example, 
attempting to use a palette with 16-bit images would require a lookup table with 65,536 different three-byte 
entries – a bit much for today’s operating systems (since they may have to reload the palette every time you 
select a window on the display).  Fortunately, the higher bit depths don’t require the palette concept as muc 
as the eight-bit color depth.

Obviously, we could dream up other schemes for representing pixel color on the display.  Some display 
systems, for example, use the subtractive primary colors (Cyan, Yellow, and Magenta, plus Black, the 
so-called CYMK color space).  Other display system use fewer or more bits to represent the values.  Some 
distribute the bits between various shades.  Monochrome displays typically use one, four, or eight bit pixels 
to display various gray scales (e.g., two, sixteen, or 256 shades of gray).  However, the bit organizations of 
this section are among the more popular in use by display adapters.

7 6 5 4 3 2 1     0

Eight-bit pixel  value provide
an index into a table of 256
24-bit values.  The value of
the selected element specifies
the 24-bit color to display.

Pixel Color
to Display
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4.6.2 Representing Audio Information

Another real-world quantity you’ll often find in digital form on a computer is audio information.  WAV 
files, MP3 files, and other audio formats are quite popular on personal computers.  An interesting question is 
“how do we represent audio information inside the computer?”  While many sound formats are far too com-
plex to discuss here (e.g., the MP3 format),  it is relatively easy to represent sound using a simple sound d 
format (something similar to the WAV file format).  In this section we’ll explore a couple of possible ways to 
represent audio information;  but before we take a look at the digital format, perhaps it’s a wise idea to study 
the analog format first.

Figure 4.8 Operation of a Speaker

Sounds you hear are the result of vibrating air molecules. When air molecules quickly vibrate back an 
forth between 20 and 20,000 times per second, we interpret this as some sort of sound. A speaker (see Figure 
4.8) is a device which vibrates air in response to an electrical signal. That is, it converts an electric signal 
which alternates between 20 and 20,000 times per second (Hz) to an audible tone. Alternating a signal is 
very easy on a computer, all you have to do is apply a logic one to an output port for some period of time 
then write a logic zero to the output port for a short period. Then repeat this over and over again. A plot of 
this activity over time appears in Figure 4.9.

Figure 4.9 An Audible Sound Wave

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s speaker is not 
capable of faithfully reproducing the tones in this range. It works pretty good for sounds in the rang 
100-10Khz, but the volume drops off dramatically outside this range. Fortunately, most modern PCs contain 
a sound card that is quite capable (with appropriate external speakers) of faithfully representing “CD-Qual-
ity” sound.   Of course, a good question might be “what is CD-Quality sound, anyway?”  Well, to answer 

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.

Voltage applied
to speaker

Time

Logic 1

Logic 0

One Clock
Period

Note: Frequency is equal to the recipricol of the clock period.   Audible sounds are
between 20 and 20,000 Hz.
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that question, we’ve got to decide how we’re going to represent sound information in a binary format ( 
“What is “Digital Audio” Anyway?” on page 112).   

Take another look at Figure 4.9.  This is a graph of  amplitude (volume level) over time.  If logic one 
corresponds to a fully extended speaker cone and logic zero corresponds to a fully retracted speaker cone, 
then the graph in Figure 4.9 suggests that we are constantly pushing the speaker cone in an out as time 
progresses.  This analog data, by the way, produces what is known as a “square wave” which tends to be a 
very bright sound at high frequencies and a very buzzy sound at low frequencies.  One advantage of a square 
wave tone is that we only need to alternate a single bit of data over time in order to produce a tone.  This is 
very easy to do and very inexpensive.  These two reasons are why the PC’s built-in speaker (not the sound 
card) uses exactly this technique for producing beeps and squawks.

To produce different tones with a square wave sound system is very easy.  All you’ve got to do is write a 
one and a zero to some bit connected to the speaker somewhere between 20 and 20,000 times per seco 
You can even produce “warbling” sounds by varying the frequency at which you write those zeros and one 
to the speaker.

One easy data format we can develop to represent digitized (or, should we say, “binarized”) audio data 
is to create a stream of bits that we feed to the speaker every 1/40,000 seconds.  By alternating ones and zer 
in this bit stream, we get a 20 KHz tone (remember, it takes a high and a low section to give us one clock 
period, hence it will take two bits to produce a single cycle on the output).  To get a 20 Hz tone, you would 
create a bit stream that alternates between 1,000 zeros and 1,000 ones.  With 1,000 zeros, the speaker will 
remain in the retracted position for 1/40 seconds, following that with 1,000 ones leaves the speaker in the 
fully extended position for  1/40 seconds.  The end result is that the speaker moves in and out 20 times a sec-
ond (giving us our 20 Hz frequency).  Of course, you don’t have to emit a regular pattern of zeros and ones 
By varying the positions of the ones and zeros in your data stream you can dramatically affect the type of 
sound the system will produce.  

The length of your data stream will determine how long the sound plays.  With 40,000 bits, the sound 
will play for one second (assuming each bit’s duration is 1/40,000 seconds).  As you can see, this sound forma 
will consume 5,000 bytes per second.  This may seem like a lot, but it’s relatively modest by digital audio 
standards.

Unfortunately, square waves are very limited with respect to the sounds they can produce and are no 
very high fidelity (certainly not “CD-Quality”).  Real analog audio signals are much more complex and you 
cannot represent them with two different voltage levels on a speaker.  Figure 4.10 provides a typical example 

What is “Digital A udio”  Anyway?

“Digital Audio” or “digitized audio” is the conventional term the consumer electronics industry use
to describe audio information encoded for use on a computer.  What exactly does the term “digital” mean
in this case.  Historically, the term “digit” refers to a finger.  A digital numbering system is one based on
counting one’s fingers.  Traditionally, then, a “digital number” was a base ten number (since the number-
ing system we most commonly use is based on the ten digits with which God endowed us).  In the early
days of computer systems the terms “digital computer” and “binary computer” were quite prevalent, with
digital computers describing decimal computer systems (i.e., BCD-based systems).  Binary compute
course, were those based on the binary numbering system.  Although BCD computers are mainly an arti-
fact in the historical dust bin, the name “digital computer” lives on and is the common term to describe al
computer systems, binary or otherwise.  Therefore, when people talk about the logic gates computer
designers use to create computer systems, they call them “digital logic.”  Lik ewise, when they refer to
computerized data (like audio data), they refer to it as “digital.”  Technically, the term “digital” should
mean base ten, not base two.  Therefore, we should really refer to “digital audio” as “binary audio” to be
technically correct.  However, it’s a little late in the game to change this term, so “digital XXXXX” lives
on.  Just keep in mind that the two terms “digital audio” and “binary audio” really do mean the same thing
even though they shouldn’t.
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of an audio waveform.  Notice that the frequency and the amplitude (the height of the signal) varies consid-
erably over time.  To capture the height of the waveform at any given point in time we will need more than 
two values;  hence, we’ll need more than a single bit.

Figure 4.10 A Typical Audio Waveform

An obvious first approximation is to use a byte, rather than a single bit, to represent each point i 
on our waveform.  We can convert this byte data to an analog signal using a “digital to analog converter” 
(how obvious) or DAC.  This accepts some binary number as input and produces an analog voltage on its 
output.  This allows us to represent an impressive 256 different voltage levels in the waveform.  By using 
eight bits, we can produce a far wider range of sounds than are possible with a single bit.   Of course 
data stream now consumes 40,000 bytes per second;  quite a big step up from the 5,000 bytes/secon 
previous example, but still relatively modest in terms of digital audio data rates.

You might think that 256 levels would be sufficient to produce some impressive audio.  Unfortunately, 
our hearing is logarithmic in nature  and it takes an order of magnitude difference in signal for a sound to 
appear just a little bit louder.  Therefore, our 256 different analog levels aren’t as impressive to our ears. 
Although you can produce some decent sounds with an eight-bit data stream, it’s still not high fidelity and 
certainly not “CD-Quality” audio.

The next obvious step up the ladder is a 16-bit value for each point of our digital audio stream.  With 
65,536 different analog levels we finally reach the realm of “CD-Quality” audio.  Of course, we’re now con-
suming 80,000 bytes per second to achieve this!  For technical reasons, the Compact Disc format actua 
requires 44,100 16-bit samples per second.  For a stereo (rather than monaural) data stream, you needo 
16-bit values each 1/44,100 seconds.  This produces a whopping data rate of over 160,000 bytes per second 
Now you understand the claim a littler earlier that 5,000 bytes per second is a relatively modest data rate.

Some very high quality digital audio systems use 20 or 24  bits of information and record the dat 
higher frequency than 44.1 KHz (48 KHz is popular, for example).  Such data formats record a better sig 
at the expense of a higher data rate.  Some sound systems don’t require anywhere near the fidelity levels of 
even a CD-Quality recording.  Telephone conversations, for example, require only about 5,000 eight-b 
samples per second (this, by the way, is why phone modems are limited to approximately 56,000 bits   
second, which is about 5,000 bytes per second plus some overhead).  Some common “digitizing” rates fo 
audio include the following:

• Eight-bit samples at 11 KHz
• Eight-bit samples at 22 KHz
• Eight-bit samples at 44.1 KHz
• 16-bit samples at 32 KHz
• 16-bit samples at 44.1 KHz
• 16-bit samples at 48 KHz
• 24-bit samples at 44.1 KHz  (generally in professional recording systems)
• 24-bit samples at 48 KHz   (generally in professional recording systems)

The fidelity increases as you move down this list.

Voltage applied
to speaker

Time

High Voltage

Low Voltage
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The exact format for various audio file formats is way beyond the scope of this text since many of the 
formats incorporate data compression.  Some simple audio file formats like WAV and AIFF consist of little 
more than the digitized byte stream, but other formats are nearly indecipherable in their complexity.  The 
exact nature of a sound data type is highly dependent upon the sound hardware in your system, so we won’t 
delve any farther into this subject.  There are several books available on computer audio and sound file for-
mats if you’re interested in pursuing this subject farther.

4.6.3 Representing Musical Information

Although it is possible to compress an audio data stream somewhat, high-quality audio will consume a 
large amount of data.  CD-Quality audio consumes just over 160 Kilobytes per second, so a CD at 65 
Megabytes holds enough data for just over an hour of audio (in stereo).  Earlier, you saw that we could use a 
palette to allow higher quality color images on an eight-bit display.  An interesting question is “can we creat 
a sound palette to let us encode higher quality audio?”  Unfortunately, the general answer is no becaus 
audio information is much less redundant than video information and you cannot produce good resu 
rough approximation (which using a sound palette would require).  However, if you’re trying to produce a 
specific sound, rather than trying to faithfully reproduce some recording, there are some possibilities ope 
you.

The advantage to the digitized audio format is that it records everything.  In a music track, for example, 
the digital information records all the instruments, the vocalists, the background noise, and, well, everything. 
Sometimes you might not need to retain all this information.  For example, if all you want to record is a key-
board player’s synthesizer, the ability to record all the other audio information simultaneously is not ne-
sary.  In fact, with an appropriate interface to the computer, recording the audio signal from the keyboard is 
completely unnecessary.  A far more cost-effective approach (from a memory usage point of view) is to sim-
ply record the notes the keyboardist plays (along with the duration of each note and the velocity at which the 
keyboardist plays the note) and then simply feed this keyboard information back to the synthesizer to pla 
the music at a later time.  Since it only takes a few bytes to record each note the keyboardist plays, and the 
keyboardist generally plays fewer than 100 notes per second, the amount of data needed to record a cox 
piece of music is tiny compared to a digitized audio recording of the same performance.

One very popular format for recording musical information in this fashion is the MIDI format (MIDI 
stands for Musical Instrument Digital Interface and it specifies how to connect musical instruments, compu-
ers, and other equipment together).  The MIDI protocol uses multi-byte values to record information about a 
series of instruments (a simple MIDI file can actually control up to 16 or more instruments simultaneous

Although the internal data format of the MIDI protocol is beyond the scope of this chapter, it is interest-
ing to note that a MIDI command is effectively equivalent to a “palette look-up” for an audio signal.  When 
a musical instrument receives a MIDI command telling it to play back some note, that instrument gene 
plays back some waveform stored in the synthesizer.

Note that you don’t actually need an external keyboard/synthesizer to play back MIDI files.  Most sound 
cards contain software that will interpret MIDI commands and play the accompany notes.  These cards defi-
nitely use  the MIDI command as an index into a “wave table” (short for waveform lookup table) to play the 
accompanying sound.  Although the quality of the sound these cards reproduce is often inferior to that a-
fessional synthesizer produces, they do let you play MIDI files without purchasing an expensive synthesizer 
module12.

If you’re  interested in the actual data format that MIDI uses, there are dozens of texts available on the 
MIDI format.  Any local music store should carry several of these.  You should also be able to find lots of 
information on MIDI on the Internet (try Roland’s web site as a good starting point).

12. For those who would like a better MIDI experience using a sound card, some synthesizer manufacturers produ
cards with an integrated synthesizer on-board.
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4.6.4 Representing Video Information

Recent increases in disk space, computer speed, and network access have allowed an explosion in the 
popularity of multimedia on personal computers.  Although the term “multimedia” suggests that the data fo-
mat deals with many different types of media, most people use this term to describe digital video reco 
and playback on a computer system.  In fact, most multimedia formats support at least two mediums: video 
and audio.  The more popular formats like Apple’s Quicktime support other concurrent media streams 
well (e.g., a separate subtitle track, time codes, and device control).  To simplify matters, we limit the discus-
sion in this section to digital video streams.

Fundamentally, a video image is nothing more than a succession of still pictures that the system di 
at some rate like 30 images per second.  Therefore, if we want to create a digitized video image format, a 
we really need to do is store 30 or so pictures for each second of video we wish to view.  This  may not seem 
like a big deal, but consider that a typical “full screen” video display has 640x480 pixels or a total of 
307,200 pixels.  If we use a 24-bit RGB color space, then each pixel will require three bytes, raising the tota 
to 921,600 bytes per image.   Displaying 30 of these images per second means our video format w-
sume 27,648,000 bytes per second.  Digital audio, at 160 Kilobytes per second is virtually nothing co 
to the data requirements for digital video.

Although computer systems and hard disk systems have advanced tremendously over the past decade, 
maintaining a 30 MByte/second data rate from disk to display is a little too much to expect from all but the 
most expensive workstations currently available (at least, in the year 2000 as this was written).  Therefore, 
most multimedia systems use various techniques (or combinations of these techniques) to get the dat 
down to something more reasonable.  In stock computer systems, a common technique is to di 
320x240 quarter screen image rather than a full-screen 640x480 image.  This reduces the data rate to abo 
seven  megabytes per second.

Another technique digital video formats use is to compress the video data.  Video data tends to contain 
lots of redundant information that the system can eliminate through the use of compression.  The popular 
DV format for digital video camcorders, for example, compresses the data stream by almost 90%, requ 
only a 3.3 MByte/second data rate for full-screen video.  This type of compression is not without cost.  There 
is a detectable, though slight, loss in image quality when employing DV compression on a video image 
Nevertheless, this compression makes it possible to deal with digital video data streams on a contempo 
computer system.  Compressed data formats are a little beyond the scope of this chapter;  however, by the 
time you finish this text you should be well-prepared to deal with compressed data formats.  Program 
writing video data compression algorithms often use assembly language because compression and-
pression algorithms need to be very fast to process a video stream in real time.  Therefore, keep reading this 
text if you’re interested in working on these types of algorithms.

4.6.5 Where to Get More Information About Data Types

Since there are many ways to represent a particular real-world object inside the computer, and nearly an 
infinite variety of real-world objects, this text cannot even begin to cover all the possibilities.  In fact, one of 
the most important steps in writing a piece of computer software is to carefully consider what objects th 
software needs to represent and then choose an appropriate internal representation for that object.  or some 
objects or processes, an internal representation is fairly obvious;  for other objects or processes, developing 
an appropriate data type representation is a difficult task.  Although we will continue to look at different data 
representations throughout this text, if you’re really interested in learning more about data representatio 
real world objects, activities, and processes, you should consult a good “Data Structures and Algorithms” 
textbook.  This text does not have the space to treat these subjects properly (since it still has to teach a-
bly language).  Most texts on data structures present their material in a high level language.  Adopting this 
material to assembly language is not difficult, especially once you’ve digested a large percentage of this text. 
For something a little closer to home, you might consider reading Knuth’s “The Art of Computer Program-
ming” that describes data structures and algorithms using a synthetic assembly language calleMIX. 
Although MIX isn’t the same as HLA or even x86 assembly language, you will probably find it easier to 
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convert algorithms in this text to x86 than it would be to convert algorithms written in Pascal, Java, or C++ to 
assembly language.

4.7 Putting It All Together

Perhaps the most important fact this chapter and the last chapter present is that computer program 
use strings of binary bits to represent data internally.  It is up to an application program to distinguis 
between the possible representations.  For example, the bit string %0100_0001 could represent the num 
value 65, an ASCII character (‘A’), or the mantissa portion of a floating point value ($41).  The CPU cannot 
and does not distinguish between these different representations, it simply processes this eight-bit value as a 
bit string and leaves the interpretation of the data to the application.

Beginning assembly language programmers often have trouble comprehending that they are responsible 
for interpreting the type of data found in memory;  after all, one of the most important abstractions th 
level languages provide is to associate a data type with a bit string in memory.  This allows the compiler to 
do the interpretation of data representation rather than the programmer.  Therefore, an important point this 
chapter makes is that assembly language programmers must handle this interpretation themselves.  The HLA 
language provides built-in data types that seem to provide these abstractions, but keep in mind that once 
you’ve loaded a value into a register, HLA can no longer interpret that data for you, it is your responsibi 
to use the appropriate machine instructions that operate on the specified data.

One small amount of checking that HLA and the CPU does enforce is size checking -  HLA w 
allow you to mix sizes of operands within most instructions13.  That is, you cannot specify a byte operan 
and a word operand in the same instruction that expects its two operands to be the same size.  However, as 
the following program indicates, you can easily write a program that treats the same value as completely dif-
ferent types.

program dataInterpretation;
#include( “stdlib.hhf” );
static
    r:  real32 := -1.0;
    
begin dataInterpretation;

    
    stdout.put( “‘r’ interpreted as a real32 value: “, r:5:2, nl );
    
    stdout.put( “‘r’ interpreted as an uns32 value: “ );
    mov( r, eax );
    stdout.putu32( eax );
    stdout.newln();
    
    stdout.put( “‘r’ interpreted as an int32 value: “ );
    mov( r, eax );
    stdout.puti32( eax );
    stdout.newln();
    
    stdout.put( “‘r’ interpreted as a dword value: $” );
    mov( r, eax );
    stdout.putd( eax );
    stdout.newln();
    
end dataInterpretation;

13. The sign and zero extension instructions are an obvious exception, though HLA still checks the operand sizes 
they are appropriate.
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Program 4.4 Interpreting a Single Value as Several Different Data Types

As this sample program demonstrates, you can get completely different results by interpreting your dat 
differently during your program’s execution.  So always remember, it is your responsibility to interpret the 
data in your program.  HLA helps a little by allowing you to declare data types that are slightly more abst 
than bytes, words, or double words;  HLA also provides certain support routines, like stdout.put, that will 
automatically interpret these abstract data types for you;  however, it is generally your responsibility to use 
the appropriate machine instructions to consistently manipulate memory objects according to their da
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