More Data Representation

More Data Representation Chapter Four

4.1 Chapter Overview

Although the basic machine data objects (bytesds; and double evds) appear to represent nothing
more than signed or unsigned numeatues, we can empjdhese data types to represent ynather types
of objects. This chapter discusses some of the other objects and their internal computer representation.

This chapter bgins by discussing theofhting point (real) numeric forma#fter integer representation,
floating point representation is the second most popular numeric format in use on modern computer sys
tems-. Although the fbating point format is sonaat comple, the necessity to handle non-igée calcu
lations in modern programs requires that you understand this numeric format and its limitations.

Binary Coded DecimalBCD) is another numeric data representation that is useful in certairxtsonte
Although BCD is not suitable for general purpose arithmetic, it is useful in some embedded applications.
The principle benefiof the BCD format is the ease with which you canvednbetween string and BCD for
mat. When we look at the BCD format a little later in this chgpteu’ll see wly this is the case.

Computers can represent all kinds ofefiént objects, not just numerialues. Characters are, unques
tionably, one of the more popular data types a computer manipulates. In this chapter yowe ailloak at
a couple of dierent wvays we can represent indtlual characters on a computer systehhis chapter dis
cusses tw of the more common character sets in use todaxSk#l character set and the Unicode charac
ter set.

This chapter concludes by discussing some common non-numeric data tymeelikolors on a video
display audio data, video data, and so on. Of course, there are lotecérdifrepresentations foryakind
of standard data you couldwsion; there is no ay two chapters in a xbook can ceer them all. (And
that's not @en considering specialized data types you could createjertNeless, this chapter (and the last)
should gve you the basic idea behind representing data on a computer system.

4.2 An Introduction to Floating Point Arithmetic

Integer arithmetic does not let you represent fractional numahies. Therefore, modern CPUs sup
port an approximation akal arithmetic: fbating point arithmeticA big problem with fbating point arith
metic is that it does not follothe standard rules of algebra.Mdeheless, manprogrammers apply normal
algebraic rules when usingéting point arithmeticThis is a source of defects in nyamrograms. One of
the primary goals of this section is to describe the limitation®afifig point arithmetic so you will under
stand hav to use it properly

Normal algebraic rules apply only ftafinite precision arithmetic Consider the simple statement
“x:=x+1," x is an intger On ary modern computer this statement falbothe normal rules of algebes
long as w@erflow does not occurThat is, this statement isaNd only for certain &lues of x
(minint<=x < maxin). Most programmers do notvVea problem with this because yrere well avare of
the fact that intgers in a program do not follothe standard algebraic rules (e.g.,52.5).

Integers do not foller the standard rules of algebra because the computer represents themnitih a fi
number of bitsYou cannot representyawnf the (intger) \alues abee the maximum intger or bela the
minimum inteyer. Floating point alues suer from this same problem, onlyonse After all, the intgers are
a subset of the real numbeF$erefore, the flating point alues must represent the samenitsi set of inte
gers. Hovever, there are an infite number of &lues between grntwo real \alues, so this problem is infi
nitely worse.Therefore, as well as hiag to limit your \alues between a maximum and minimum range, you
cannot represent all thalues between thosedwanges, either

1. There are other numeric formats, such as fixed point formats and binary coded decimal format.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages7

Chapter Four Volume One

To represent real numbers, mosgting point formats empjoscientifc notation and use some number
of bits to represent mantissaand a smaller number of bits to represend@onent The end result is that
floating point numbers can only represent numbers with a speaifiber ofsignificantdigits. This has a
big impact on hw floating point arithmetic operateBo easily see the impact of limited precision arith
metic, we will adopt a simpligid decimal fhating point format for ourxamples. Our fating point format
will provide a mantissa with three sigo#int digits and a decimakgonent with tv digits. The mantissa
and eponents are both signeédlues as stvn in Figure 4.1

L[e[1]

Figure 4.1 Simple Floating Point Format

When adding and subtractingdmumbers in scientdinotation, you must adjust thedwalues so that
their exponents are the sameorFexample, when adding 1.23el and 4.56e0, you must adjusaliesvso
they have the samexponent. One @y to do this is to caert 4.56e0 to 0.456e1 and then abhis produces
1.686el. Unfortunatelythe result does nott finto three signifiant digits, so we must eithesundor trun-
cate the result to three signifant digits. Rounding generally produces the most accurate result,sso let’
round the result to obtain 1.69&k you can see, the lack pfecision(the number of digits or bits we main
tain in a computation) &cts the accurgothe correctness of the computation).

In the preious example, we were able to round the result because we mainfaimesignificant digits
during the calculation. If our élating point calculation is limited to three sigeéint digitsduring computa
tion, we would hase had to truncate the last digit of the smaller nuprdigaining 1.68el which izven less
correct.To improve the accurgcof floating point calculations, it is necessary to axtdaadigits for use dur
ing the calculation. Extra digitvailable during a computation are kmoasguard digits (or guard bitsin
the case of a binary formaf)hey greatly enhance accusaduring a long chain of computations.

The accurag loss during a single computation usually isehough to wrry about unless you are
greatly concerned about the accyra€ your computations. Heever, if you compute aalue which is the
result of a sequence obéting point operations, the error caccumulateand greatly déct the computa
tion itself. For example, suppose we were to add 1.23e3 with 1.08dj0sting the numbers so theixpo-
nents are the same before the addition produces 1.23e3 + 0.0B&estim of these twalues, gen after
rounding, is 1.23e3lhis might seem perfectly reasonable to you; after all, we can only maintain three sig
nificant digits, adding in a smaldle shouldrt’ affect the result at all. Heever, suppose we were to add
1.00e0 to 1.23eten timesThe frst time we add 1.00e0 to 1.23e3 we get 1.23e2&wlide, we get this same
result the second, third, fourth, ..., and tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself ten times, then added the result (1.00el) to 1.23e3ulkhave gotten a ditrent result,
1.24e3This is an important thing to kmoabout limited precision arithmetic:

0 The order of ealuation can effect the accuracy of the result.
You will get more accurate results if the relative magnitudes (that is, the exponents) are close to one
another. If you are performing a chain calculation involving addition and subtraction, you should attempt to
group the values appropriately.

Another problem with addition and subtraction is that you can wind upfaliétl pecision Consider
the computation 1.23e0 - 1.22 €lhis produces 0.01e@lthough this is mathematically eguaient to
1.00e-2, this latter form suggests that the last digits are ractly zero. Unfortunate)ywe've only got a
single signifcant digit at this time. Indeed, some FPUs oatfhg point soft@re packages might actually
insert random digits (or bits) into the L.O. positiofis brings up a second important rule concerning lim
ited precision arithmetic:

0 Wheneer subtracting two numbers with the same signs or adding two numbers with
different signs, the accuracy of the result may be less than the precision available in
the floating point format.

Pages8 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Multiplication and dvision do not sifér from the same problems as addition and subtraction since you
do not hae to adjust thex@onents before the operation; all you need to do is adkpoments and muki
ply the mantissas (or subtract thgpenents and dide the mantissas). By themsety multiplication and
division do not produce particularly poor resultswéeer, they tend to multiply ap error that alreadyxésts
in a \alue. For example, if you multiply 1.23e0 by oy when you should be multiplying 1.24e0 byif#he
result is gen less accurat&his brings up a third important rule wheonking with limited precision arith
metic:

0 When performing a chain of calculationsaiving addition, subtraction, multipliea
tion, and division, try to perform the multiplication and division operations first.

Often, by applying normal algebraic transformations, you can arrange a calculation so the multiply and
divide operations occur first. For example, suppose you want to compute x*(y+z). Normally you would add
y and z together and multiply their sum by x. However, you will get a little more accuracy if you transform
X*(y+z) to get x*y+x*z and compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying two very large or
very small numbers, it is quite possible éwerflow or underfbw to occur The same situation occurs when
dividing a small number by a @& number or diding a lage number by a small numb@&iis brings up a
fourth rule you should attempt to folowvhen multiplying or diiding values:

0 When multiplying and diding sets of numbers, try to arrange the multiplications so
that they multiply large and small numbers together; likewise, try to divide numbers
that have the same relative magnitudes.

Comparing floating point numbers is very dangerous. Given the inaccuracies present in any computa-
tion (including converting an input string to a floating point value), you shwarer compare tw floating
point values to see if tlyeare equal. In a binaryofiting point format, diérent computations which produce
the same (mathematical) result mayeatiin their least signifiant bits. Br example, adding 1.31e0+1.69e0
should produce 3.00€0. lakise, adding 1.50e0+1.50e0 should produce 3.00e@ekés were you to
compare (1.31e0+1.69e0)agst (1.50e0+1.50e0) you mighidi out that these sums aret equal to one
anotherThe test for equality succeeds if and only if all bits (or digits) in tleedperands arexactly the
same. Since this is not necessarily true afterdifferent fbating point computations which should produce
the same result, a straight test for equality may mokw

The standard ay to test for equality betweewdting point numbers is to determineshmuch error (or
tolerance) you will allev in a comparison and check to see if oakei® is within this error range of the other
The straight-fonard way to do this is to use a testdikhe follaving:

if Valuel >= (Value2-error) and Val uel <= (Val ue2+error) then ...

Another common way to handle this same comparison is to use a statement of the form:

i f abs(Val uel-Val ue2) <= error then ...

Most texts, when discussingdating point comparisons, stop immediately after discussing the problem
with floating point equalityassuming that other forms of comparison are perfectly okay witirfyy point
numbersThis isnt true! If we are assuming thety if x is within yterror, then a simple bitwise comparison
of x andy will claim thatx<y if y is greater thaw but less thary+error. However, in such a caseshould
really be treated as equalytonot less thay. Therefore, we mustwhys compare tw floating point num
bers using ranges,gardless of the actual comparison wanvto performTrying to compare tw floating
point numbers directly can lead to an erfiar compare tw floating point numberss andy, aginst one
anotheyyou should use one of the folling forms:

if abs(x-y) <= error then ...
if abs(x-y) > error then ...
if (x-y) <-error then ...

if (x-y) <= error then ...

if (x-y) >error then ...

if (x-y) >= -error then ...

vV V. IAN AN I

You must gercise care when choosing thedue forerror. This should be aalue slightly greater than
the lagest amount of error which will creep into your computatidine eact \alue will depend upon the

Beta Draft - Do not distribute © 2001, By Randall Hyde PageB9

Chapter Four Volume One

particular fbating point format you useubmore on that a little lateThe final rule we will state in this sec
tion is
0 When comparing te floating point numbers, always compare one value to see if it is
in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values. This text can only
point out some of the major problems and make you aware of the fact that you cannot treat floating point
arithmetic like real arithmetic — the inaccuracies present in limited precision arithmetic can get you into trou-
ble if you are not careful. A good text on numerical analysis or even scientific computing can help fill in the
details that are beyond the scope of this text. If you are going to be working with floating point arithmetic,
any languge, you should taf the time to study thefetts of limited precision arithmetic on your computa
tions.

HLA'’s IF statement does not support boolegressions ivolving floating point operandsTherefore,
you cannot use statementselidF(x < 3.141)THEN..” in your programs. In a later chapter that discusses
floating point operations on the 80x86 ybl€arn hav to do fbating point comparisons.

4.2.1 |IEEE Floating Point Formats

When Intel planned to introduce adting point coprocessor for theinm@&086 microprocesspthey
were smart enough to realize that the electrical engineers and solid-g&itésghwho design chips were,
perhaps, not the best people to do the necessary numerical analysis to pick the best possible binary represen
tation for a fbating point format. So Intel went out and hired the best numerical analystahlel find to
design a fhating point format for their 8087 FPWThat person then hired tnother &perts in the &ld and
the three of them (Kahn, Coonan, and Stone) designedlfibelfing point formatThey did such a good job
designing the KCS Floating Point Standard that the IEE@nization adopted this format for the IEEE
floating point formatt

To handle a wide range of performance and acguemuirements, Intel actually introductteefloat
ing point formats: single precision, double precision, atidreled precisionlhe single and double preci
sion formats corresponded tosGloat and double types or FORAN's real and double precision types.
Intel intended to usextended precision for long chains of computations. Extended precision contains 16
extra bits that the calculations could use as guard bits before roundimgtdca double precisionalue
when storing the result.

The single precision formaises a ong’complement 24 bit mantissa and an eightxuess-127 g0
nent.The mantissa usually representsafue between 1.0 to just under 2Ibe H.O. bit of the mantissa is
always assumed to be one and represenafue yust to the left of theinary poinf. The remaining 23 man
tissa bits appear to the right of the binary pdiherefore, the mantissa represents tilae:

1. nhmmmm nmmmmIm mmmmmmm

The “mmmm...” characters represent the 23 bits of the mantigsp K mind that we are working with

binary numbers here. Therefore, each position to the right of the binary point represents a value (zero or one)
times a successive negative power of two. The implied one bit is always muItipIi@dvIziyitzw is oneThis

is why the mantissa is always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value br@f course, een if we had an almost infinite number of one

bits after the binary point, they still would not add up to two. This is why the mantissa can represent values
in the range one to just under two.

Although there are an infinite number of values between one and two, we can only represent eight mil-
lion of them because we use a 23 bit mantissa (thoB4s alvays one)This is the reason for inaccuyac

2. There were some minor changes to the way certain degenerate operations were handled, but the bit representation remained
essentially unchanged.

3. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal numbers.

4. Actually, this isn’t necessarily true. The IEEE floating point format supgertsrmalized/alues where the H.O. bit is not

zero. However, we will ignore denormalized values in our discussion.

Paged0 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

in floating point arithmetic — we are limited to 23 bits of precision in computatieolyiimg single precision
floating point @lues.

The mantissa useae’s complementormat rather than tels complementThis means that the 24 bit
value of the mantissa is simply an unsigned binary number and the sign bit determines whethleetisat v
positive or ngative. Ones complement numbers\Jethe unusual property that there are t@presenta
tions for zero (with the sign bit set or clear). Generdhis is important only to the person designing the
floating point softwre or hardare systeme will assume that thealue zero avays has the sign bit clear

To representalues outside the range 1.0 to just under 2.0, xberent portion of thedhting point for
mat comes into playrhe floating point format raises twmo the pwer specifed by the gponent and then
multiplies the mantissa by thigle.The eponent is eight bits and is stored inexgess-127format. In
excess-127 format, thexponent Sis represented by thele 127 ($7f)Therefore, to corert an &ponent
to excess-127 format simply add 127 to tixpenent alue. The use of xcess-127 format malk it easier to
compare fhating point @alues.The single precisiondhting point format tas the form shen in Figure 4.2

31 23 15 7 0
Sign Exponent Bits Mantissa Bits
Bit

The 241N mantissa bit is
implied and is always one.

Figure 4.2 Single Precision (32-bit) Floating Point Format

With a 24 bit mantissa, you will get approximatelﬁ/@digits of precision (one half digit of precision
means that therft six digits can all be in the range 0.18 the seenth digit can only be in the range 0..x
where x<9 and is generally close teefi. With an eight bit rcess-127>gonent, the dynamic range of single
precision fbating point numbers is approximatefﬁzlé8 or about 18%8,

Although single precision dating point numbers are perfectly suitable for ynapplications, the
dynamic range is somat limited for mag scientifc applications and theewy limited precision is unsuit
able for may financial, scientii, and other applications. Furthermore, in long chains of computations, the
limited precision of the single precision format may introduce serious error

The double precision formdtelps @ercome the problems of single precisiomafing point. Using
twice the space, the double precision format has an 1kdass-1023>@ponent and a 53 bit mantissa (with
an implied H.O. bit of one) plus a sign Aihis prorides a dynamic range of abouf?®fand 144/2 digits of
precision, sufcient for most applications. Double precisiooafing point alues tak the form shen in

Figure 4.3
63 52 7 0
Sign Exponent Bits III Mantissa Bits
Bit d
The 53" mantissa bit is
implied and is always one.
Figure 4.3 64-Bit Double Precision Floating Point Format

In order to help ensure accuyaturing long chains of computationsatving double precisiondhating
point numbers, Intel designed theended precision formalhe etended precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa, four of the additional bits are appended to the

Beta Draft - Do not distribute © 2001, By Randall Hyde Page9ol

Chapter Four Volume One

end of the gponent. Unlilke the single and double precisicues, thex@ended precision formatmantissa
does not hee an implied H.O. bit which iswahys oneTherefore, thexdended precision format prigles a
64 bit mantissa, a 15 bikeess-16383xponent, and a one bit sigfihe format for the xdended precision
floating point @lue is shan in Figure 4.4

79 64 7 0
Sign Exponent Bits Mantissa Bits
Bit
Figure 4.4 80-bit Extended Precision Floating Point Format

On the FPUs all computations are done using xtended precision forn¥Wheneer you load a single
or double precisionalue, the FPU automatically ogerts it to an xtended precisionalue. Likewise, when
you store a single or double precisi@ue to memorythe FPU automatically rounds thalwe devn to the
appropriate size before storing it. Byvalys working with the &tended precision format, Intel guarantees a
large number of guard bits are present to ensure the agafrgour computations. Somexts erroneously
claim that you should wer use the xended precision format in youwa programs, because Intel only
guarantees accurate computations when using the single or double precision Tdnisi&goolish. By per
forming all computations using 80 bits, Intel helps ensuner{bt guarantee) that you will get full 32 or 64
bit accurag in your computations. Since the FPUs do novioi® a lage number of guard bits in 80 bit
computations, some error will imigably creep into the L.O. bits of axtended precision computation.
However, if your computation is correct to 64 bits, the 80 bit computation wilhys preide at least64
accurate bits. Most of the time you will ggea moreWhile you cannot assume that you get an accurate 80
bit computation, you can usually do better than 64 when usingtieded precision format.

To maintain maximum precision during computation, most computationsouselizedvalues A nor-
malized fbating point @lue is one whose H.O. mantissa bit contains Aineost ary non-normalized alue
can be normalized by shifting the mantissa bits to the left and decrementirgdher& until a one appears
in the H.O. bit of the mantissa. Rememtike &ponent is a binaryxponent. Each time you increment the
exponent, you multiply the dlating point alue by tvo. Likewise, wheneer you decrement thexgonent,
you dvide the fbating point alue by tvo. By the same tan, shifting the mantissa to the left one bit posi
tion multiplies the fhating point @alue by tvo; likewise, shifting the mantissa to the rightides the fhating
point value by tvo. Therefore, shifting the mantissa to the left one postimh decrementing thexponent
does not change thalue of the thating point number at all.

Keeping fbating point numbers normalized is beaiedi because it maintains the maximum number of
bits of precision for a computation. If the H.O. bits of the mantissa are all zero, the mantissa hasythat man
fewer bits of precisiomailable for computatioriTherefore, a fiating point computation will be more aecu
rate if it involves only normalizedalues.

There are tw important cases where adting point number cannot be normalizéde \alue 0.0 is a
special case. Qfiously it cannot be normalized because thatfhg point representation for zero has no one
bits in the mantiss&his, havever, is not a problem since we caxaetly represent thealue zero with only
a single bit.

The second case is when werdnaome H.O. bits in the mantissa which are zatdhe biasedxonent
is also zero (and we cannot decrement it to normalize the mantissa). Rather tham déstdio small al-
ues, whose H.O. mantissa bits and bias@adreent are zero (the mostgaéive exponent possible), the IEEE
standard allws speciablenormalizedvalues to represent these smallaiues. Although the use of denor
malized \alues allavs IEEE fbating point computations to produce better results than if uageyticurred,
keep in mind that denormalizedlues ofer less bits of precision.

5. The alternative would be to underflow the values to zero.

Paged2 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Since the FPU alays corerts single and double precisiocalwes to gtended precisionxéended pre
cision arithmetic is actuallfasterthan single or double precisiofherefore, thexgected performance ben
efit of using the smaller formats is not present on these chipgevdp when designing the Pentium/586
CPU, Intel redesigned thaiilt-in floating point unit to better compete with RISC chips. Most RISC chips
support a natie 64 bit double precision format which &sfer than Inted’ ectended precision formathere
fore, Intel proided natve 64 bit operations on the Pentium to better competiastghe RISC chip3.here
fore, the double precision format is tlestest on the Pentium and later chips.

4.2.2

HLA Support for Floating Point Values

HLA provides sgeral data types and library routines to support the useairfy point data in your
assembly language programBhese include dilt-in types to declaredhting point ariables as well as reu
tines that preide floating point input, output, and agarsion.

Perhaps the best place to start when discussingsHioating point &cilities is with a description of
floating point literal constants. HLAofkiting point constants allothe followving syntax:

e An optional “+” or “-” symbol, denoting the sign of the mantissa (if this is not present, HLA
assumes that the mantissa is positive),

e Followed by one or more decimal digits,

e Optionally followed by a decimal point and one or more decimal digits,

e Optionally followed by an “e” or “E”, optionally followed by a sign (“+” or “-") and one or
more decimal digits.

Note: the decimal point or the “e”/"E” must be present in order to differentiate this value from an integer or
unsigned literal constant. Here are some examples of legal literal floating point constants:

1.234 3. 75e2 -1.0 1. 1le-1 le+4 0.1 -123. 456e+789 +25e0

Notice that a fhating point literal constant cannot begin with a decimal point; it must begin with a decimal
digit so you must use “0.1” to represent “.1” in your programs.

HLA also allows you to place an underscore character (*_") between any two consecutive decimal digits
in a floating point literal constant. You may use the underscore character in place of a comma (or other lan-
guage-specific separator character) to help make your large floating point numbers easier to read. Here are
some examples:

1 234 837.25 1_000. 00 789 934.99 9 999. 99

To declare a @lating point ariable you use theeal32 real64 or real80data types. Li& their intger
and unsigned brethren, the number at the end of these data type declaratiors $peaifimber of bits
used for each typgbinary representatio.herefore, you useeal32to declare single precision reallves,
real64to declare double precisioroéiting point @lues, andeal80to declare gtended precision dhating
point values. Other than thadt that you use these types to declaratithg point @ariables rather than inte
gers, their use is nearly identical to thatifu8, int16, int32etc. The folloving examples demonstrate these
declarations and their syntax:

static

fltVarl: real 32;

fltVarla: real32 := 2. 7;

pi: real 32 := 3.14159;

Dol Var: real 64;

Dbl Var 2: real 64 := 1.23456789e+10;
XPVar : r eal 80;

XPVar 2: real 80 : = -1. Oe-104;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageo3

Chapter Four Volume One

To output a fhating point ariable inASCII form, you would use one of thetdout.putr32,std
out.putr64,or stdout.putr80routines. These procedures display a number in decimal notation, that is, a
string of digits, an optional decimal point and a closing string of digits. Other than their names, these three
routines usexactly the same calling sequence. Here are the calls and parameters for each of these routines:

stdout. putr80(r:real 80; width:uns32; decpts:uns32);
stdout. putr64(r:real 64; wi dth:uns32; decpts:uns32);
stdout. putr32(r:real 32; w dth:uns32; decpts:uns32);

The first parameter to these procedures is thatifig point @lue you wish to print.The size of this
parameter must match the procedsineame (e.g., the parameter must be an 80-bktended precision
floating point ariable when calling thetdout.putr80routine). The second parameter spexsfithe fld
width for the output tet; this is the number of print positions the number will require when the procedure
displays it. Note that this width must include print positions for the sign of the number and the decimal
point. The third parameter spe@§ the number of print positions after the decimal poiot. ekample,

stdout. putr32(pi, 10, 4);

displays the &lue
_ 3.1416

(the underscores represent leading spaces inxhise).

Of course, if the number is very large or very small, you will want to use scientific notation rather than
decimal notation for your floating point numeric output. The HLA Standard Lilstalgut.pute32,ts-
out.pute64andstdout.pute8@outines pruide this fcility. These routines use the folllng procedure pro
totypes:

stdout . put e80(r:real 80; wi dth:uns32);
stdout . put e64(r:real 64; w dth:uns32);
stdout. pute32(r:real 32; w dth:uns32);

Unlike the decimal output routines, these scientifdtation output routines do not require a third
parameter specifying the number of digits after the decimal point to display width parameteindi-
rectly, specifes this @alue since all bt one of the mantissa digitsxalys appears to the right of the decimal
point. These routines output theialues in decimal notation, similar to the foliog:

1. 23456789e+10 -1. Oe- 104 le+2

You can also outputdéating point alues using the HLA Standard Librasydout.putroutine. If you
specify the name of adfting point ariable in thestdout.pufparameter list, thetdout.putcode will output
the \alue using scientifi notation. The actual #ld width \aries depending on the size of theaflng point
variable (thestdout.putroutine attempts to output as nyasignificant digits as possible, in this case). Exam
ple:

stdout.put(“XPVar2 = “, XPVar2);

If you specify a ®ld width specifiation, by using a colon folleed by a signed ingger \alue, then the
stdout.putroutine will use the appropriatedout.puteXXoutine to display thealue. That is, the number
will still appear in scientifi notation, kat you get to control thedid width of the outputalue. Like the feld
width for integer and unsignedalues, a posite field width right justifes the number in the speetifield, a
negative number left justiis the alue. Here is anxample that prints th¥P\ar2 variable using ten print
positions:

stdout.put(“XPVar2 = “, XPVar2:10);

If you wish to usestdout.puto print a fbating point @lue in decimal notation, you need to use the fol
lowing syntax:

Variabl e_Narre : Wdth : DecPts

Paged4 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Note that thédecPtsfield must be a non-negative integer value.

Whenstdout.putcontains a parameter of this form, it calls the corresporstohmut.putrXXroutine to
display the speciid floating point @lue. As an éample, consider the folldng call:

stdout.put(“Pi =*“, pi:5:3);

The corresponding output is
3.142

The HLA Standard Library prxades sgeral other useful routines you can use when outputtiragirig
point values. Consult the HLA Standard Library reference manual for more information on these routines.

The HLA Standard Library pxades sgeral routines to let you display#iting point alues in a wide
variety of formats. In contrast, the HLA Standard Library onlyigles two routines to supportdating
point input:stdin.cetf() andstdin.cget(). The stdin.getf() routine requires the use of the 80x86 FPU stack, a
hardware component that this chapter is not going t@cadl herefore, this chapter will defer the discussion
of thestdin.getf() routine until the chapter on arithmetic, later in thid.teSince thestdin.get() routine pre
vides all the capabilities of trstdin.cetf() routine, this deference will not pre@to be a problem.

You've already seen the syntax for #tein.get() routine; its parameter list simply contains a list of
variable namesStdin.get() reads appropriatealues for the user for each of thaeriables appearing in the
parameter list. If you specify the name of @afing point ariable, thestdin.get() routine automatically
reads a flating point alue from the user and stores the result into the specdriable. The folloving
example demonstrates the use of this routine:

stdout. put (“Input a double precision floating point value: “);
stdin. get(Dbl Var);

Warning: This section has discussed how you would declare floating point variables and
how you would input and output them. It did not discuss arithmetic. Floating point arith
metic is different than integer arithmetic; you cannot use the 80x86 ADD and SUB
instructions to operate on floating point values. Floating point arithmetic will be the sub
ject of a later chapter in this text.

4.3

Binary Coded Decimal (BCD) Representation

Although the intger and fbating point formats ae@r most of the numeric needs of aemage program,
there are some special cases where other numeric representationyemnentn In this section wedis-
cuss the Binary Coded Decimal (BCD) format since the 80x86 CPlidpsoa small amount of hardve
support for this data representation.

BCD values are a sequence of nibbles with each nibble representahgeairvthe range zero through
nine. Of course you can represealues in the range 0..15 using a nibble; the BCD formateles, uses
only 10 of the possible 16 ¢&rent \alues for each nibble.

Each nibble in a BCDalue represents a single decimal digiterefore, with a single byte (i.e.,dw
digits) we can represenalues containing tavdecimal digits, oralues in the range 0..9%Vith a word, we
can representalues hging four decimal digits, oralues in the range 0..9999. kilise, with a double
word we can represenalies with up to eight decimal digits (since there are eight nibbles in a daardle w
value).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageds

Chapter Four Volume One

H.O. Nibble L.O. Nibble
(H.O. Digit) (L.O. Digit)

0..9 09

Figure 4.5 BCD Data Representation in Memory

As you can see, BCD storage tsparticularly memory ditient. For example, an eight-bit BCDari-
able can represenalues in the range 0..99 while that same eight bits, when holding a béitaey an rep
resent alues in the range 0..255. kikise, a 16-bit binaryalue can represenalues in the range 0..65535
while a 16-bit BCD alue can only represent ab&lg. of those walues (0..9999). In&€ient storage ishthe
only problem. BCD calculations tend to bengto than binary calculations.

At this point, youte probably wndering wly aryone would ever use the BCD formatThe BCD for
mat does hae two sasing graces: is very easy to corert BCD \alues between the internal numeric repre
sentation and their string representation; alsogitg ®asy to encode multi-digit decimalwes in hardare
(e.g., using a “thumb wheel” or dial) using BCD than it is using binBoy these tw reasons, yote likely
to see people using BCD in embedded systems (e.g., toastex and alarm clocksubrarely in general
purpose computer sofase.

A few decades ago people mistaky thought that calculationsviolving BCD (or just ‘decimal’) arith
metic was more accurate than binary calculatiofiserefore, thg would often perform ‘importantalcula
tions, like those imolving dollars and cents (or other monetary units) using decimal-based arithvkikiie.
it is true that certain calculations can produce more accurate results in BCD, this statement is not true in gen
eral. Indeed, for most calculationyvée those molving fixed pointdecimal arithmetic), the binary repre
sentation is more accurateorihis reason, most modern computer programs represeatusbvn a binary
form. For example, the Intel x86 dkting point unit (FPU) supports a pair of instructions for loading and
storing BCD walues. Internallyhavever, the FPU coverts these BCDalues to binary and performs all cal
culations in binary It only uses BCD as axternal data format &ernal to the FPU, that is)his generally
produces more accurate results and requinele$s silicon than kiang a separate coprocessor that supports
decimal arithmetic.

This text will take up the subject of BCD arithmetic in a later chaptémtil then, you can safely ignore
BCD unless you fid yourself comerting a COBOL program to assembly language (which is quite
unlikely).

4.4

Paged6

Characters

Perhaps the most important data type on a personal computer is the character datetigren “char
acter” refers to a human or machine readable symbol that is typically a non-numericlargigneral, the
term “character” refers to sgrsymbol that you can normally type on eylioard (including some symbols
that may require multiplegy presses to produce) or display on a video displgry beginners often con
fuse the terms “character” and “alphabetic chardciEnese terms are not the same. Punctuation symbols,
numeric digits, spaces, tabs, carriage returns (enter), other control characters, and other special symbols are
also charactersWhen this t&t uses the term “character” it refers toyaf these characters, not just the
alphabetic characterswhen this t&t refers to alphabetic characters, it will use phrases“kphabetic
characters, “upper case charactersyr “lower case charactefrs.

© 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Another common problem baners hae when the first encounter the character data type fedihti
ating between numeric characters and numb@&hge character ‘lis distinct and dferent from the alue
one. The computer (generally) usesawlifferent internal, binaryrepresentations for numeric characters
(0, ‘1, ..., '9)) versus the numericalues zero through nin&ou must tak care not to confuse thedw

Most computer systems use a one ar byte sequence to encode tlagious characters in binary form.
Windows and Linux certainlydil into this catgory, using either th&SCII or Unicode encodings for char
acters. This section will discuss th&SCII character set and the character declaratoitities that HLA
provides.

44.1

The ASCII Character Encoding

The ASCIl (American Standard Code for Information Interchange) Character set mapstliaBdiear
acters to the unsigned iger \alues 0..127 ($0..$7F). Internalbf course, the computer represemsrg
thing using binary numbers; so it should come as no surprise that the computer also usealbesaty v
represent non-numeric entities such as characditsough the gact mapping of characters to numeradtv
ues is arbitrary and unimportant, it is important to use a standardized code for this mapping since you will
need to communicate with other programs and periphevadedeand you need to talk the same “language”
as these other programs andides. This is where thSCIl code comes into play; it is a standardized
code that nearlyveryone has agreed upohherefore, if you use th&SCIl code 65 to represent the charac
ter “A” then you knev that some peripheral dee (such as a printer) will correctly interpret thidue as the
character A” whenever you transmit data to thatwvdee.

You should not get the impression tASCII is the only character set in use on computer systems. I1BM
uses the EBCDIC character setrily on may of its mainframe computer systennother common char
acter set in use is the Unicode character set. Unicode idearsion to thé\SCIl character set that uses 16
bits rather than sen to represent characterBhis allavs the use of 65,536 €ifrent characters in the char
acter set, alwing the inclusion of most symbols in therid’s different languages into a single uedi
character set.

Since theASCII character set pvides only 128 dferent characters and a byte can represent 2te8-dif
ent\alues, an interesting question arises: “what do we do withatbes/128..255 that one could store into
a byte alue when wrking with character data?” One answer is to ignore thxse wlues. That will be
the primary approach of thisxte Another possibility is tox@end theASCII character set and add an addi
tional 128 characters to the character set. Of course, dhisitend to defeat the whole purpose ofihg a
standardized character set unless you couldwggyene to agree upon thgtensions. That is a dificult
task.

When IBM first created their IBM-PC, thedefned thesexdra 128 character codes to conta@mious
non-English alphabetic characters, some lingvohig graphics characters, some mathematical symbols, and
several other special characters. Since IBFAC vas the foundation for what we typically call a PC today
that character set has become a pseudo-standard on all IBM-PC compatible machémesn &Ewodern
machines, which are not IBM-PC compatible and cannot run early PGaseftive IBM &tended character
set still surwes. Note, hwever, that this PC character set (attemsion of theASCII character set) is not
universal. Most printers will not print thextended characters when using vationts and manprograms
(particularly in non-English countries) do not use those characters for the upper 128 codes in an eight-bit
value. fr these reasons, thisctewill generally stick to the standard 128 chara&®CII character set.
However, a fav examples and programs in thixtevill use the IBM PC gtended character set, particularly
the line draving graphic characters (sdppendix B).

Should you need toxehange data with other machines which are not PC-compatible, yewhby
two alternaties: stick to standar®lSCII or ensure that the gt machine supports the&tended IBM-PC
character set. Some machinese ltheApple Macintosh, do not pwide natve support for thex¢ended
IBM-PC character set; gver you may obtain a PC font which lets you display tttereled character set.

6. Upper and lower case characters are always alphabetic characters within this text.

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged7

Chapter Four Volume One

Other machines a similar capabilities. Heever, the 128 characters in the standARCIl character set
are the only ones you should count on transferring from system to system.

Despite thedct that it is a “standard”, simply encoding your data using sta#&€dl characters does
not guarantee compatibility across syste¥dhkile it's true that anA” on one machine is most kky an ‘A”
on another machine, there isry little standardization across machines with respect to the use of the control
characters. Indeed, of the 32 control codes plus delete, there are only four control codes commonly sup
ported — backspace (BS), tab, carriage return (CR), and line feed\afg still, diferent machines often
use these control codes infdient ways. End of line is a particularly troublesomeample.Windows,
MS-DOS, CP/M, and other systems mark end of line by tleectvaracter sequence CR/I&pple Macin
tosh, and manother systems mark the end of line by a single CR charaatex, BeOS, and other UNIX
systems mark the end of a line with a single LF charadisdless to sapttempting to xchange simple
text files between such systems can bexgerence in frustration. Ew if you use standaiiSCII charae
ters in all your fes on these systems, you will still need tovewhthe data whernxehanging fies between
them. ortunately such cowersions are rather simple.

Despite some major shortcoming§Cll data ighestandard for data interchange across computer sys
tems and programs. Most programs can acs8glll data; lilkewise most programs can produwe®BClI data.
Since you will be dealing witASCII characters in assembly language,ould be wise to study the layout
of the character set and memorizewa key ASCII codes (e.g., “0",A”, “a”, etc.).

TheASCII character set xeluding the &tended characters dedid by IBM) is dvided into four groups
of 32 characterslhe first 32 character&,SCIl codes 0 through $1F (31), form a special set of non-printing
characters called theontrol charactersWe call them control characters because therform \arious
printer/display control operations rather than displaying symbols. Examples icelu@ge return, which
positions the cursor to the left side of the current line of charédliesfeed (which mees the cursor den
one line on the output diee), and back space (which wes the cursor back one position to the left). Unfor
tunately different control characters performfdilent operations on d&rent output déces.There is ery
little standardization among outputvitees. To find out &actly hav a control character faficts a particular
device, you will need to consult its manual.

The second group of 3RSCII character codes comprisarius punctuation symbols, special charac
ters, and the numeric digitfhe most notable characters in this group include the space character (ASCII
code $20) and the numeric digits (ASCII codes $30..$39). Note that the numeric digitrdin their
numeric \alues only in the H.O. nibble. By subtracting $30 fromABEII code for ag particular digit you
can obtain the numeric egaient of that digit.

The third group of 3ASCII characters contains the upper case alphabetic chardétessSCIl codes
for the charactersA”..”Z” lie in the range $41..$5A (65..90). Since there are only 2éreifit alphabetic
characters, the remaining six codes h@dous special symbols.

The fourth, and fial, group of 3ASCII character codes represent thedo case alphabetic symbols,
five additional special symbols, and another control character (delete). Note thatethedse character
symbols use thASCII codes $61..$7A. If you ceart the codes for the upper andvér case characters to
binary, you will notice that the upper case symbolgedifrom their laver case equalents in gactly one bit
position. For example, consider the character code for “E” and “e” in theviatig figure:

7. Historically, carriage return refers to theper carriageused on typewriters. A carriage return consisted of physically mov-
ing the carriage all the way to the right so that the next character typed would appear at the left hand side of the paper.

Pageo8 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

5 4 3 2

S o fofofoffoli]

7 6 5 4 3 2 1 O
© | o 0

Figure 4.6 ASCII Codes for “E” and “e”

The only place these tacodes dier is in bit five. Upper case charactersvays contain a zero in bit
five; lower case alphabetic charactemsas contain a one in bivg.You can use thisatt to quickly cowert
between upper andvuer case. If you hee an upper case character you can force itted@ase by setting
bit five to one. If you hae a laver case character and you wish to force it to upper case, you can do so by set
ting bit five to zeroYou can toggle an alphabetic character between upperwwaddase by simply rert
ing bit five.

Indeed, bits fie and six determine which of the four groups inABEIIl character set yor€ in:

Table9: ASCII Groups

Bit 6 Bit 5 Group
0 0 Control Characters
0 1 Digits & Punctuation
1 0 Upper Case & Special
1 1 Lower Case & Special

So you could, for instance, ogrtt any upper or lower case (or corresponding special) character to its equiv
alent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:

Table 10: ASCII Codesfor Numeric Digits

Character Decimal Hexadecimal
“0” 48 $30
“1” 49 $31
“2" 50 $32
“3” 51 $33

Beta Draft - Do not distribute © 2001, By Randall Hyde PageQ9

Chapter Four Volume One

Table 10: ASCII Codesfor Numeric Digits

Character Decimal Hexadecimal
“4” 52 $34
“5” 53 $35
“6” 54 $36
“r" 55 $37
“8” 56 $38
“9” 57 $39

The decimal representations of thA&LClIl codes are notery enlightening. Heoever, the headecimal
representation of the#e&SClIl codes reeals somethingery important — the L.O. nibble of tR&ClI code is
the binary equialent of the represented numtgy stripping avay (i.e., setting to zero) the H.O. nibble of a
numeric characteryou can cowvert that character code to the corresponding binary representation. Con
versely you can covert a binary glue in the range 0..9 to &SCII character representation by simply-set
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the H.O. bits to zero;
likewise, you can use the logical-OR operation to force the H.O. bits to %0011 (three).

Note that yowcannotcorvert a string of numeric characters to their egl@int binary representation by
simply stripping the H.O. nibble from each digit in the string.\@oiing 123 ($31$32 $33) in this &shion
yields three bytes: $010203, not the corretti® which is $7B. Carerting a string of digits to an irger
requires more sophistication than this; theveosion abwe works only for single digits.

4.4.2

HLA Support for ASCII Characters

Although you could easily store charactefues inbyte variables and use the corresponding numeric
equivalentASCII code when using a character literal in your program, suchyagamnecessary - HLA
provides good support for characteriables and literals in your assembly language programs.

Character literal constants in HLA &kne of tw forms: a single character surrounded by apostrophes
or a pound symbol (“#") follwed by a numeric constant in the range 0..127 specifying 3@ code of
the characterHere are somexamples:

‘A #65 #$41 #%9100_0001

Note that thesexamples all represent the same character (‘A) since the ASCII code of ‘A’ is 65.

With a single exception, only a single character may appear between the apostrophes in a literal charac-
ter constant. That single exception is the apostrophe character itself. If you wish to create an apostrophe lit-
eral constant, place four apostrophes in a row (i.e., double up the apostrophe inside the surrounding
apostrophes), i.e.,

Thepound sign operator#°) must precede adal HLA numeric constant (either decimalxhédecimal
or binary as thexamples abee indicate). In particulathe pound sign is not a generic charactevexsion
function; it cannot precedegisters or ariable names, only constanss a general rule, you shouldhalys
use the apostrophe form of the character literal constant for graphic characters (that is, those that are print
able or displayable). Use the pound sign form for control characters (thatiait@enor do fung things
when you print them) or forxéendedASCII characters that may not display or print properly within your
source code.

Pagel00 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Notice the diference between a character literal constant and a string literal constant in your programs.
Strings are sequences of zero or more characters surrounded by quotation marks, characters are surrounded
by apostrophes. It is especially important to realize that

A £ A

The character constay ‘and the string containing the single charac®tiave two completely difer-
ent internal representations. If you attempt to use a string containing a single character whetpadtsA e
a character constant, HLA will report an errdstrings and string constants will be the subject of a later
chapter

To declare a characteanable in an HLA program, you use ttiear data type.The folloving declara
tion, for xkample, demonstrates\Wwdo declare aariable namedtlserinput

static
User | nput : char;

This declaration reseeg one byte of storage that you could use to storelzaracter &lue (including
eight-bit ectendedASCII characters).You can also initialize characteanables as the folleing example

demonstrates:

static
TheChar A: char := ‘A;
Ext endedChar char := #128;

Since characterariables are eight-bit objects, you can manipulate them using eightisiers. You
can mee characterariables into eight-bit gisters and you can store thaue of an eight-bit gister into a
character ariable.

The HLA Standard Library pxades a handful of routines that you can use for character I/O and-manip
ulation; these includstdout.putg¢stdout.putcSizestdout.put, stdingfc,andstdin.get.

Thestdout.putaoutine uses the follwing calling sequence:

stdout. putc(chvar);

This procedure outputs the single character parameter passed to it as a character to the standard output
device. The parameter may be a&hgr constant or variable, ortgytevariable or registér

The stdout.putcSizeoutine preides output width control when displaying charactariables. The
calling sequence for this procedure is

stdout. put cSi ze(charvar, widthint32, fillchar);

This routine prints the speafi character (parameterusing at leaswidth print positions. If the absolute
value ofwidth is greater than one, thatdout.putcSizerints thefill character as padding. If the value of
width is positive, therstdout.putcSizerints the character right justified in the print field;witith is nega

tive, thenstdout.putcSizprints the character left justified in the print field. Since character output is usually
left justified in a field, thevidth value will normally be negative for this call. The space character is the most
commonfill value.

You can also print character values using the gesttaut.putroutine. If a characteraviable appears
in thestdout.putparameter list, thestdout.putwill automatically print it as a charactealue, e.g.,

stdout. put(“Character ¢ =", ¢, “‘”", nl);
You can read characters from the standard input usingttie gtc and stdin.get routines. The

stdin.getcroutine does not lva ary parameters. It reads a single character from the standard uffart b
and returns this character in tA& register You may then store the charactalue avay or otherwise

8. If you specify a byte variable or a byte-sized register as the parametsitidiaé putcroutine will output the character
whose ASCII code appears in the variable or register.

9. The only timestdout.putcSizases more print positions than you specify is when you specify zero as the width; then this
routine uses exactly one print position.

Beta Draft - Do not distribute © 2001, By Randall Hyde PagelOl

Chapter Four Volume One

manipulate the character in tAé register The following program reads a single character from the, user
corverts it to upper case if it is ader case characteand then displays the character:

progr am char | nput Deno;
#include(“stdlib.hhf”);
static

c: char;

begi n char | nput Deno;

stdout.put(“Enter a character: “);
stdin.getc();
if(al >*a) then

if(al <=2) then

and($5f, al);

endi f;

endi f;

st dout . put

(
“The character you entered, possibly “, nl,
“converted to upper case, was ‘"

)

stdout.putc(al);

stdout.put(“*”, nl);

end char | nput Deno;

Program 4.1 Character Input Sample

You can also use the genesidin.gt routine to read characteanables from the userlf a stdin.get
parameter is a charactariable, then thetdin.get routine will read a character from the user and store the
character alue into the spec#d \ariable. Here is the program aeaevritten to use thstdin.getroutine:

progr am char | nput Deno2;
#include(“stdlib.hhf”);
static
c: char;
begi n char | nput Deno2;
stdout. put(“Enter a character: “);
stdin.get(c);
if(c>"'a) then
if(c<="'2) then
and($5f, c);

endi f;

Pagel02 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

endi f;

st dout . put

(
“The character you entered, possibly “, nl,
“converted to upper case, was ‘",
c,
“oroonl

)

end char | nput Deno2;

Program 4.2 Stdin.get Character Input Sample

As you may recall from the last chaptére HLA Standard Libraryifers its input. Whene&er you
read a character from the standard input usidin.getcor stdin.cet, the library routines read thextevail-
able character from thauffer; if the ffer is emptythen the program reads aankne of text from the user
and returns ther§t character from that line. If youant to guarantee that the program readsmalime of
text from the user when you read a characteiable, you should call th&tdin.fushinputroutine before
attempting to read the charact@iis will flush the current inputuffer and force the input of awdine of
text on the net input (which should be yowtdin.getcor stdin.get call).

The end of line is problematic. Befent operating systems handle the end of lirferdifitly on output
versus input. From the consolevibe, pressing the ENTERek signals the end of a line; \Wwever, when
reading data from al& you get an end of line sequence which is typically a line feed or a carriage return/line
feed pair To help sole this problem, HLA Standard Library pwides an “end of line” functionThis pre
cedure returns true (one) in tAk register if all the current input characters@deen ghausted, it returns
false (zero) otherwiselhe folloving sample program demonstrates the use détttin.eolnfunction.

pr ogr am eol nDeno2;
#include(“stdlib.hhf”);
begi n eol nDeno2;

stdout.put(“Enter a short line of text: “);
stdin. flushlnput();
r epeat

stdin.getc();

stdout. putc(al);

stdout.put(“=$", al, nl);
until (stdin.eoln());

end eol nDeno2;

Program 4.3 Testing for End of Line Using Stdin.eoln

The HLA language and the HLA Standard Libraryyide maiy other procedures and additional sup
port for character objects. Later chapters in thitbteok, as well as the HLA reference documentation,
describe he to use these features.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel03

Chapter Four Volume One

4.4.3 The ASCII Character Set

The following table lists the binayjexadecimal, and decimal representations for each of thA328
character codes.

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0000_0000 00 0 NULL
0000_0001 | 01 1 ctrl A
0000_0010 | 02 2 ctrl B
0000_0011 | 03 3 ctrl C
0000_0100 | 04 4 ctrl D
0000_0101 | 05 5 ctrl E
0000_0110 | 06 6 ctrl F
0000_0111 | 07 7 bell
0000_1000 | 08 8 backspace
0000_1001 | 09 9 tab
0000_1010 | OA 10 line feed
0000_1011 | OB 11 ctrl K
0000 1100 | OC 12 form feed
0000 _1101 | OD 13 return
0000_1110 | OE 14 ctrl N
0000_1111 | OF 15 ctrl O
0001_0000 | 10 16 ctrl P
0001_0001 | 11 17 ctrl Q
0001_0010 | 12 18 ctrl R
0001_0011 | 13 19 ctrl S
0001_0100 | 14 20 ctrl T
0001_0101 | 15 21 ctrl U
0001_0110 | 16 22 ctrl v
0001_0111 | 17 23 ctrl W

Pagel04 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0001_1000 | 18 24 ctrl X
0001_1001 | 19 25 ctrlY
0001_1010 | 1A 26 ctrl Z
0001_1011 | 1B 27 ctrl [
0001_1100 | 1C 28 ctrl \
0001_1101 | 1D 29 Esc
0001 1110 | 1E 30 ctrl A
0001 1111 | 1F 31 ctrl
0010_0000 | 20 32 space
0010_0001 | 21 33 !
0010_0010 | 22 34 "
0010_0011 | 23 35 #
0010_0100 | 24 36 $
0010_0101 | 25 37 %
0010_0110 | 26 38 &
0010 0111 | 27 39 '
0010 1000 | 28 40 (
0010_1001 | 29 41)
0010_1010 | 2A 42 *
0010_1011 | 2B 43 +
0010_1100 | 2C 44 :
0010_1101 | 2D 45 -
0010_1110 | 2E 46
0010_1111 | 2F 47 /
0011_0000 | 30 48 0
0011_0001 | 31 49 1
0011_0010 | 32 50 2
0011_0011 | 33 51 3

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel05

Chapter Four

Pagel06

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0011_0100 | 34 52 4
0011_0101 | 35 53 5
0011_0110 | 36 54 6
0011_0111 | 37 55 7
0011_1000 | 38 56 8
0011_1001 | 39 57 9
0011_1010 | 3A 58
0011_1011 | 3B 59 ;
0011_1100 | 3C 60 <
0011 1101 | 3D 61 =
0011_1110 | 3E 62 >
0011_1111 | 3F 63 ?
0100_0000 | 40 64 @
0100_0001 | 41 65 A
0100_0010 | 42 66 B
0100_0011 | 43 67 C
0100_0100 | 44 68 D
0100_0101 | 45 69 E
0100_0110 | 46 70 F
0100_0111 | 47 71 G
0100_1000 | 48 72 H
0100_1001 | 49 73 |
0100_1010 | 4A 74 J
0100_1011 | 4B 75 K
0100_1100 | 4C 76 L
0100_1101 | 4D 77 M
0100_1110 | 4E 78 N
0100_1111 | 4F 79 @)

© 2001, By Randall Hyde

Volume One

Beta Draft - Do not distribute

More Data Representation

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0101_0000 | 50 80 P
0101_0001 | 51 81 Q
0101_0010 | 52 82 R
0101_0011 | 53 83 S
0101_0100 | 54 84 T
0101_0101 | 55 85 U
0101_0110 | 56 86 \Y
0101_0111 | 57 87 W
0101_1000 | 58 88 X
0101_1001 | 59 89 Y
0101_1010 | 5A 90 Z
0101_1011 | 5B 91 [
0101_1100 | 5C 92 \
0101_1101 | 5D 93]
0101_1110 | 5E 94 n
0101_1111 | 5F 95 _
0110_0000 | 60 96
0110_0001 | 61 97 a
0110_0010 | 62 98 b
0110_0011 | 63 99 c
0110_0100 | 64 100 d
0110_0101 | 65 101 e
0110_0110 | 66 102 f
0110_0111 | 67 103 g
0110_1000 | 68 104 h
0110_1001 | 69 105 i
0110_1010 | 6A 106]
0110_1011 | 6B 107 k

Beta Draft - Do not distribute © 2001, By Randall Hyde PagelQ7

Chapter Four Volume One

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0110_1100 | 6C 108 I
0110_1101 | 6D 109 m
0110_1110 | 6E 110 n
0110_1111 | 6F 111 0]
0111 0000 | 70 112 p
0111 0001 | 71 113 o}
0111 0010 | 72 114 r
0111 0011 | 73 115 S
0111 _0100 | 74 116 t
0111 0101 | 75 117 u
0111 0110 | 76 118 v
0111 0111 | 77 119 w
0111 1000 | 78 120 X
0111 1001 | 79 121 y
0111 1010 | 7A 122 z
0111 1011 | 7B 123 {
0111 1100 | 7C 124 |
0111 1101 | 7D 125 }
0111 1110 | 7E 126 ~
0111 1111 | 7F 127

4.5

The UNICODE Character Set

Although theASCII character set is, unquestionalihe most popular character representation orr com
puters, it is certainly not the only format aroundr &xample, IBM uses the EBCDIC code on manf its
mainframe and minicomputer lines. Since EBCDIC appears mainly onsiBlg'iron and yodi rarely
encounter it on personal computer systems, we will not consider that character setin tArsotber char
acter representation that is becoming popular on small computer systemsdaruhés, for that matter) is
the Unicode character set. Unicodeei@omes tw of ASCII's greatest limitations: the limited character
space (i.e., a maximum of 128/256 characters in an eight-bit byte) and the lack of internatyomal {he
USA) characters.

Unicode uses a 16-bitord to represent a single charactéherefore, Unicode supports up to 65,536
different character codeshis is olviously a huge adance oer the 256 possible codes we can represent
with an eight-bit byte. Unicode is upnds compatible froMASCIl. Specifcally, if the H.O. 17 bits of a

Pagel08 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Unicode character contain zero, then the L.@esdits represent the same character a&3i@| character
with the same character code. If the H.O. 17 bits contain some nonahgégpthien the character represents
some other alue. If youte wondering wly so mawy different character codes are necesssirgply note
that certairAsian character sets contain 4096 characters (at least, their Unicode subset).

This text will stick to theASCII character setxeept for a fev brief mentions of Unicode here and there.
Eventually this text may hae to eliminate the discussion ASCII in favor of Unicode since mannew
operating systems are using Unicode internally (angezbto ASCII as necessary)Unfortunately mary
string algorithms are not as a@miently written for Unicode as f&SCII (especially character set func
tions) so wdl stick with ASCII in this tet as long as possible.

4.6 Other Data Representations

Of course, we can represent malifferent objects other than numbers and characters in a computer
system. The following subsections pwide a brief description of the €ifrent real-world data types you
might encounter

4.6.1 Representing Colors on a Video Display

As you'e probably ware, color images on a computer display are made up of a series of datsadeno
pixels(which is short for “picture elemenis. Different display modes (depending on the capability of the
display adapter) use &Bfent data representations for each of theselgixThe one thing in common
between these data types is thaytbentrol the mixture of the three addaiprimary colors (red, green, and
blue)to form a specié color on the displayThe question, of course, islanuch of each of these colors do
they mix together?

Color depthis the term video card maradturers use to describevhonuch red, green, and blue yhe
mix together for each pgl. Modern video cards generally pide three color depths of eight, sixteen, or
twenty-four bits, allaing 256, 65536, orver 16 million colors per pd on the display This produces
images that are somvbat coarse and grair{eight-bit images) to “Polaroid quality” (16-bit images), on up
to “photographic quality” (24-bit imagé@

One problem with these color depths is that biithe three formats do not contain a number of bits that
is evenly dvisible by three.Therefore, in each of these formats at least one of the three primary colors will
have fewer bits than the others.oFexample, with an eight-bit color depth,dvef the colors can ke three
bits (or eight diferent shades) associated with them while one of the colors nvasbhly two bits (or four
shades).Therefore, when distriliing the bits there are three formats possible: 2-3-8 lfits red, three bits
green, and three bits blue), 3-2-3, or 3-3-2. ehike, with a 16 bit color depth, tnof the three colors can
have five bits while the third color can V& six bits. This lets us generate threefdient palettes using the
bit values 5-5-6, 5-6-5, or 6-5-5.0F24-bit displays, each primary color carvéaight bits, so there is an
even distrilution of the colors for each pk

A 24-bit display produces amazingly good resuks16-bit display produces okay images. Eight-bit
displays, to put it bluntlyproduce horrible photographic images Ytli® produce good synthetic images
like those you wuld manipulate with a dwaprogram). To produce better images when using an eight-bit
display most cards prade a hardwrepalette A palette is nothing more than an array of 24-blties con
taining 256 elementd. The system uses the eight-bit glixalue as an indeinto this array of 256alues
and displays the color associated with the 24-bit entry in the palette Adtihleugh the display can still dis

10. Some graphic artists would argue that 24 bit images are not of a sufficient quality. There are some display/primter./scanne
devices capable of working with 32-bit, 36-bit, and even 48-bit images; if, of course, you're willing to pay for them.

11. Actually, the color depth of each palette entry is not necessarily fixed at 24 bits. Some display devices, for example, use
18-bit entries in their palette.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel09

Chapter Four Volume One

play only 256 diferent colors at one time, the palette mechanism lets users seletty evhich colors the
want to display For example, thg could display 250 shades of blue and six shades of purple if suchha mix
ture produces a better image for them.

Pixel Cola
to Display

Eight-bit pixel value provie
an index into a table of 256
24-bit values. The value of
the selected element specifies
the 24-bit color to display.

Figure 4.7 Extending the Number of Colors Using a Palette

Unfortunately the palette scheme onlyovks for displays with minimal color depths.orFexample,
attempting to use a palette with 16-bit imagesild require a lookup table with 65,536fdient three-byte
entries — a bit much for todaybperating systems (since yhmay hae to reload the paletteery time you
select a winde on the display). értunately the higher bit depths ddmrequire the palette concept as much
as the eight-bit color depth.

Obviously, we could dream up other schemes for representirgj gaor on the displaySome display
systems, for xaample, use the subtraai primary colors (Cyanyellow, and Magenta, plus Black, the
so-calledCYMK color space). Other display system useefieor more bits to represent thalwes. Some
distribute the bits betweeravious shadesMonochrome displays typically use one, foorr eight bit piels
to display arious gray scales (e.g.,dwsixteen, or 256 shades of gray). wéeer, the bit oganizations of
this section are among the more popular in use by display adapters.

Pagell0 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

4.6.2 Representing Audio Information

Another real-wrld quantity youll often find in digital form on a computer is audio informatioWAV
files,MP3 files, and other audio formats are quite popular on personal compArergeresting question is
“how do we represent audio information inside the comput@aile mary sound formats aref too com
plex to discuss here (e.g., the MP3 format), it is nedéifieasy to represent sound using a simple sound data
format (something similar to th&AV file format). In this section witexplore a couple of possibleays to
represent audio information;ubbefore we tad a look at the digital format, perhaps & wise idea to study
the analog formatrf$t.

The speaker
responds by
pushing the
air in an out
——® according to
the electrical
signal.

Input an alternating electrical signa
to the peaker.

L

Figure 4.8 Operation of a Speaker

Sounds you hear are the result of vibrating air molecWégn air molecules quickly vibrate back and
forth between 20 and 20,000 times per second, we interpret this as some sort & speatkr (sed-igure
4.9) is a deice which vibrates air in response to an electrical sigriat is, it comerts an electric signal
which alternates between 20 and 20,000 times per second (Hz) to an audibidtéonating a signal is
very easy on a compujell you hae to do is apply a logic one to an output port for some period of time and
then write a logic zero to the output port for a short pefibeén repeat thisver and @er agin. A plot of
this actvity over time appears iRigure 4.9

Voltage applied
to speaker One Clock

Period

Logic 1 I | | |_| | | \
Logic 0 ' - Time

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are
between 20 and 20,000 Hz.

Figure 4.9 An Audible Sound Wave

Although may humans are capable of hearing tones in the range 20-20Khz, theg&@kr is not
capable of dithfully reproducing the tones in this range. lbriss pretty good for sounds in the range
100-10Khz, lot the wlume drops dfdramatically outside this rangeoffunately most modern PCs contain
a sound card that is quite capable (with appropriger®al speagrs) of fithfully representing “CD-Qual
ity” sound. Of course, a good question might be “what is CD-Quality soupadag” Well, to answer

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagelll

Chapter Four Volume One

that question, wee got to decide o we're going to represent sound information in a binary format (see
“What is “DigitalAudio” Anyway? on pagell?).

Take another look atigure 4.9 This is a graph of amplitudedume level) over time. If logic one
corresponds to a fullyxéended speadt cone and logic zero corresponds to a fully retracted speake,
then the graph ifrigure 4.9suggests that we are constantly pushing the speadne in an out as time
progressesThis analog data, by theay produces what is ki as a “square ae” which tends to be a
very bright sound at high frequencies aneée/Nuzzy sound at w frequencies. One admtage of a square
wave tone is that we only need to alternate a single bit of datatime in order to produce a ton€his is
very easy to do andewy inexpensve. These tw reasons are whthe PCs Luilt-in spealer (not the sound
card) usesyactly this technique for producing beeps and sdgsa

To produce dierent tones with a squareawve sound system iewy easy All you've got to do is write a
one and a zero to some bit connected to the spsakna/here between 20 and 20,000 times per second.
You can gen produce “wrbling” sounds by arying the frequencat which you write those zeros and ones
to the speads.

One easy data format we carvelep to represent digitized (@whould we sgy'binarized”) audio data
is to create a stream of bits that we feed to the speadry 1/40,0003econds. By alternating ones and zeros
in this bit stream, we get a 20 KHz tone (rememibdéakes a high and avosection to gie us one clock
period, hence it will taé two bits to produce a singlgde on the output).To get a 20 Hz tone, youawmld
create a bit stream that alternates between 1,000 zeros and 1,000Vithes,000 zeros, the speakwill
remain in the retracted position fb’ﬁo seconds, follwing that with 1,000 ones lees the spead in the
fully extended position for1/40 seconds.The end result is that the speaknores in and out 20 times a sec
ond (gving us our 20 Hz frequept Of course, you dohhave to emit a rgular pattern of zeros and ones.
By varying the positions of the ones and zeros in your data stream you can dramafedlishaftype of
sound the system will produce.

The length of your data stream will determineviong the sound playswith 40,000 bits, the sound
will play for one second (assuming eachshituration i§/4oioooseconds)As you can see, this sound format
will consume 5,000 bytes per seconthis may seem li& a lot, ot it's relatvely modest by digital audio
standards.

Unfortunately square \aves are ery limited with respect to the soundsythmn produce and are not
very high fdelity (certainly not “CD-Quality”). Real analog audio signals are much more compteyou
cannot represent them withdwdifferent wltage leels on a speak Figure 4.1(orovides a typical xample

What is “Digital A udio” Anyway?

“Digital Audio” or “digitized audio” is the corentional term the consumer electronics industry uses
to describe audio information encoded for use on a compitieat xactly does the term “digital” mean
in this case. Historicallythe term “digit” refers to ariger A digital numbering system is one based on
counting ones fingers. Traditionally, then, a “digital number” as a base ten number (since the number
ing system we most commonly use is based on the ten digits with which Gadeenas). In the early
days of computer systems the terms “digital computer” and “binary computer” were quikeiprewith
digital computers describing decimal computer systems (i.e., BCD-based systems). Binary computers, of
course, were those based on the binary numbering systiéinough BCD computers are mainly an arti
fact in the historical dust bin, the name “digital computeedion and is the common term to describe all
computer systems, binary or otherwis&€herefore, when people talk about the logateg computer
designers use to create computer systemy, dak them “digital logic. Lik ewise, when thg refer to
computerized data (l&audio data), tlyerefer to it as “digital. Technically the term “digital” should
mean base ten, not baseotwi herefore, we should really refer to “digital audio” as “binary audio” to be
technically correct. Hwever, it's a little late in the @me to change this term, so “digital XXXXXVés
on. Just kep in mind that the vterms “digital audio” and “binary audio” really do mean the same thing,
even though theg shouldnt.

Pagell2 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

of an audio wveform. Notice that the frequenand the amplitude (the height of the signaljies consid
erably aer time. To capture the height of theaweform at ag given point in time we will need more than
two values; hence, wikheed more than a single bit.

Voltage applied
to speaker

High Voltag

Low Voltage

Time

Figure 4.10 A Typical Audio Waveform

An obvious frst approximation is to use a byte, rather than a single bit, to represent each point in time
on our vaveform. We can cowert this byte data to an analog signal using a “digital to analogeder’
(how olvious) or DAC. This accepts some binary number as input and produces an aokapge \on its
output. This allovs us to represent an impress56 diferent \oltage leels in the vaveform. By using
eight bits, we can produce arfwider range of sounds than are possible with a single bit. Of course, our
data stream @ consumes 40,000 bytes per second; quite a big step up from the 5,000 bytes/second in the
previous example, ot still relatvely modest in terms of digital audio data rates.

You might think that 256 \els would be sufcient to produce some impressiaudio. Unfortunately
our hearing is logrithmic in nature and it tek an order of magnitude fdifence in signal for a sound to
appear just a little bit louderTherefore, our 256 diérent analog Mels arert as impressie to our ears.
Although you can produce some decent sounds with an eight-bit data streastil] itot high filelity and
certainly not “CD-Quality” audio.

The ne&t obvious step up the ladder is a 16-katwe for each point of our digital audio streaxith
65,536 diferent analog kels we fnally reach the realm of “CD-Quality” audio. Of course,eiav con
suming 80,000 bytes per second to aahithis! For technical reasons, the Compact Disc format actually
requires 44,100 16-bit samples per seconal aFstereo (rather than monaural) data stream, you need tw
16-bit values eacH/44llooseconds.This produces a whopping data rate w¢r0160,000 bytes per second.
Now you understand the claim a littler earlier that 5,000 bytes per second isvelyelatidest data rate.

Some ‘ery high quality digital audio systems use 20 or 24 bits of information and record the data at a
higher frequengthan 44.1 KHz (48 KHz is populdor example). Such data formats record a better signal
at the @pense of a higher data rate. Some sound systenisrequnire agwhere near thedelity levels of
even aCD-Quality recording. Telephone corersations, for xample, require only about 5,000 eight-bit
samples per second (this, by thaywis why phone modems are limited to approximately 56,000 bits per
second, which is about 5,000 bytes per second plus seeneead). Some common “digitizing” rates for
audio include the folling:

* Eight-bit samples at 11 KHz

* Eight-bit samples at 22 KHz

* Eight-bit samples at 44.1 KHz

e 16-bit samples at 32 KHz

e 16-bit samples at 44.1 KHz

e 16-bit samples at 48 KHz

e 24-bit samples at 44.1 KHz (generally in professional recording systems)
e 24-bit samples at 48 KHz (generally in professional recording systems)

The fidelity increases as you move down this list.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell3

Chapter Four Volume One

The act format for @rious audio fe formats is &y begrond the scope of thisxesince man of the
formats incorporate data compression. Some simple alaiorimats lilke WAV andAIFF consist of little
more than the digitized byte streanut lother formats are nearly indecipherable in their coxitgle The
exact nature of a sound data type is highly dependent upon the soundtesirdyour system, so weow't
delve ary farther into this subjectThere are seral books @ailable on computer audio and sourid for-
mats if youte interested in pursuing this subjeatther

4.6.3 Representing Musical Information

Although it is possible to compress an audio data streanvdmahehigh-quality audio will consume a
large amount of data. CD-Quality audio consumes just 460 Kilobytes per second, so a CD at 650
Megabytes holds enough data for jugepan hour of audio (in stereo). Earligou sav that we could use a
palette to allav higher quality color images on an eight-bit displAwy interesting question is “can we create
a sound palette to let us encode higher quality audio?” Unfortuntitelgeneral answer is no because
audio information is much less redundant than video information and you cannot produce good results with
rough approximation (which using a sound paletbell require). Hwever, if you're trying to produce a
specift sound, rather than trying taithfully reproduce some recording, there are some possibilities open to
you.

The adwantage to the digitized audio format is that it recexdsything In a music track, fon@mple,
the digital information records all the instruments, tbealists, the background noise, and, weigrything
Sometimes you might not need to retain all this informatiar. ekample, if all you vant to record is agy-
board playes synthesizerthe ability to record all the other audio information simultaneously is not-neces
sary In fact, with an appropriate intade to the computerecording the audio signal from theykoard is
completely unnecessanj far more cost-ééctive approach (from a memory usage point ofwies to sim
ply record the notes thejoardist plays (along with the duration of each note anddloeity at which the
keyboardist plays the note) and then simply feed teybéard information back to the synthesizer to play
the music at a later time. Since it onlydala fev bytes to record each note theyloardist plays, and the
keyboardist generally playsvier than 100 notes per second, the amount of data needed to record a comple
piece of music is tyncompared to a digitized audio recording of the same performance.

One \ery popular format for recording musical information in thlishion is the MIDI format (MIDI
stands for Musical Instrument Digital Intace and it spec#s hev to connect musical instruments, comput
ers, and other equipment togethefhe MIDI protocol uses multi-bytealues to record information about a
series of instruments (a simple MIDlefican actually control up to 16 or more instruments simultaneously).

Although the internal data format of the MIDI protocol iydred the scope of this chaptéris interest
ing to note that a MIDI command ifeftively equivalent to a “palette look-up” for an audio signsiVhen
a musical instrument resgis a MIDI command telling it to play back some note, that instrument generally
plays back some aveform stored in the synthesizer

Note that you dom’actually need anxéernal leyboard/synthesizer to play back MIDlefs. Most sound
cards contain softare that will interpret MIDI commands and play the accompentes. These cards defi
nitely use the MIDI command as an irdeto a “wave table” (short for weform lookup table) to play the
accompanping sound.Although the quality of the sound these cards reproduce is often inferior to that a pro
fessior;lazl synthesizer produces ytlie let you play MIDI fies without purchasing arxjgensve synthesizer
module.

If you're interested in the actual data format that MIDI uses, there are dozexts efdadable on the
MIDI format. Any local music store should carryveeal of these.You should also be able tod lots of
information on MIDI on the Internet (try Rolasdiveb site as a good starting point).

12. For those who would like a better MIDI experience using a sound card, some synthesizer manufacturers produce sound
cards with an integrated synthesizer on-board.

Pagell4 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

4.6.4

Representing Video Information

Recent increases in disk space, computer speed, andrketecess he alloved an &plosion in the
popularity of multimedia on personal computekdthough the term “multimedia” suggests that the data for
mat deals with mandifferent types of media, most people use this term to describe digital video recording
and playback on a computer system. dctf most multimedia formats support at least tmediums: video
and audio. The more popular formats BkKApple’s Quicktime support other concurrent media streams as
well (e.g., a separate subtitle track, time codes, avidaleontrol). To simplify matters, we limit the discus
sion in this section to digital video streams.

Fundamentallya video image is nothing more than a succession of still pictures that the system displays
at some rate lik 30 images per secondherefore, if we \ant to create a digitized video image format, all
we really need to do is store 30 or so pictures for each second of video we wish tdhige may not seem
like a big deal, lt consider that a typical “full screen” video display has 640x486Ipiar a total of
307,200 piels. If we use a 24-bit RGB color space, then eadH pil require three bytes, raising the total
to 921,600 bytes per image. Displaying 30 of these images per second means our video format will con
sume 27,648,000 bytes per second. Digital audio, at 160 Kilobytes per second is virtually nothing compared
to the data requirements for digital video.

Although computer systems and hard disk systemms hehanced tremendouslyer the past decade,
maintaining a 30 MByte/second data rate from disk to display is a little too muxpect drom all loit the
most epensve workstations currentlyvailable (at least, in the year 2000 as th&swritten). Therefore,
most multimedia systems usarious techniques (or combinations of these techniques) to get the data rate
down to something more reasonable. In stock computer systems, a common technique is to display a
320x240 quarter screen image rather than a full-screen 640x480 iftsigeeduces the data rate to about
seven meabytes per second.

Another technique digital video formats use istonpessthe video dataVideo data tends to contain
lots of redundant information that the system can eliminate through the use of compréssiqropular
DV format fordigital video camcorders, foxample, compresses the data stream by almost 90%, requiring
only a 3.3 MByte/second data rate for full-screen vidguas type of compression is not without coShere
is a detectable, though slight, loss in image quality when gmgldV compression on a video image.
Nevertheless, this compression reakit possible to deal with digital video data streams on a contemporary
computer system. Compressed data formats are a lijitentbehe scope of this chapter; wever, by the
time you fhish this tet you should be well-prepared to deal with compressed data formats. Programmers
writing video data compression algorithms often use assembly language because compression and decom
pression algorithms need to bery fast to process a video stream in real tiberefore, kep reading this
text if you're interested in wrking on these types of algorithms.

4.6.5

Where to Get More Information About Data Types

Since there are mgiways to represent a particular readld object inside the computemd nearly an
infinite variety of real-vorld objects, this t¢ cannot gen bein to coser all the possibilities. Iratt, one of
the most important steps in writing a piece of computer soéws to carefully consider what objects the
software needs to represent and then choose an appropriate internal representation for thabob@uoe F
objects or processes, an internal representatiairig bbvious; for other objects or processesjaedeping
an appropriate data type representation isfecdif task. Although we will continue to look at dérent data
representations throughout thigttef you're really interested in learning more about data representation of
real world objects, actities, and processes, you should consult a good “Data Structurédgamnithms”
textbook. This text does not hae the space to treat these subjects properly (since it still has to teach assem
bly language). Most xs on data structures present their material in a high language.Adopting this
material to assembly language is nofidiflt, especially once yowe digested a lge percentage of thisxte
For something a little closer to home, you might consider reading kntitheArt of Computer Program
ming” that describes data structures and algorithms using a synthetic assembly languagdiXalled
Although MIX isn't the same as HLA orven x86 assembly language, you will probabhdfit easier to

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell5

Chapter Four Volume One

corvert algorithms in this te to x86 than it wuld be to cowvert algorithms written in &scal, Jea, or C++ to
assembly language.

4.7

Putting It All Together

Perhaps the most importaraict this chapter and the last chapter present is that computer programs all
use strings of binary bits to represent data internaltyis up to an application program to distinguish
between the possible representationst ékample, the bit string %0100_0001 could represent the numeric
value 65, a\SCII character &'), or the mantissa portion of aé#iting point alue ($41). The CPU cannot
and does not distinguish between thesteiht representations, it simply processes this eighghiewas a
bit string and leges the interpretation of the data to the application.

Beginning assembly language programmers oftese i@uble comprehending that yhare responsible
for interpreting the type of data found in memory; after all, one of the most important abstractions that high
level languages prade is to associate a data type with a bit string in membinys allovs the compiler to
do the interpretation of data representation rather than the programhegefore, an important point this
chapter maés is that assembly language programmers must handle this interpretation teembseNALA
language prades huilt-in data types that seem to pide these abstractionsytbkeep in mind that once
you've loaded aalue into a rgister HLA can no longer interpret that data for you, it is your responsibility
to use the appropriate machine instructions that operate on theespdaita.

One small amount of checking that HLA and the CPU does enforce is size checking - HLA will not
allow you to mix sizes of operands within most instructfdnsThat is, you cannot specify a byte operand
and a vord operand in the same instruction thqgiexts its tw operands to be the same size.wHe®r, as
the following program indicates, you can easily write a program that treats the slmmeas completely dif
ferent types.

program dat al nterpretation;
#include(“stdlib.hhf”);
static

r: real32 :=-1.0;

begi n datal nterpretation;

st dout . put (r’ interpreted as a real 32 value: “, r:5:2, nl);
stdout.put(“‘r’ interpreted as an uns32 value: “);

nov(r, eax);

stdout. putu32(eax);

stdout. new n();

stdout. put(“*
nmov(r, eax);
stdout. puti 32(eax);
stdout. new n();

r’ interpreted as an int32 value: “);

st dout . put (
mov(r, eax);
stdout. putd(eax);
stdout . new n();

r’ interpreted as a dword value: $);

end datal nterpretation;

13. The sign and zero extension instructions are an obvious exception, though HLA still checks the operand sizes to ensure
they are appropriate.

Pagell6 © 2001, By Randall Hyde Beta Draft - Do not distribute

More Data Representation

Program 4.4 Interpreting a Single Value as Several Different Data Types

As this sample program demonstrates, you can get complefeledifresults by interpreting your data
differently during your prograra’execution. So alays remembeiit is your responsibility to interpret the
data in your program. HLA helps a little by aliag you to declare data types that are slightly more abstract
than bytes, wrds, or double wrds; HLA also preides certain support routines, dilstdout.put, that will
automatically interpret these abstract data types for yoweveq it is generally your responsibility to use
the appropriate machine instructions to consistently manipulate memory objects according to their data type.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell7

Chapter Four Volume One

Pagell8 © 2001, By Randall Hyde Beta Draft - Do not distribute

	More Data Representation Chapter Four
	4.1 Chapter Overview
	4.2 An Introduction to Floating Point Arithmetic
	4.2.1 IEEE Floating Point Formats
	4.2.2 HLA Support for Floating Point Values

	4.3 Binary Coded Decimal (BCD) Representation
	4.4 Characters
	4.4.1 The ASCII Character Encoding
	4.4.2 HLA Support for ASCII Characters
	4.4.3 The ASCII Character Set

	4.5 The UNICODE Character Set
	4.6 Other Data Representations
	4.6.1 Representing Colors on a Video Display
	4.6.2 Representing Audio Information
	4.6.3 Representing Musical Information
	4.6.4 Representing Video Information
	4.6.5 Where to Get More Information About Data Types

	4.7 Putting It All Together

