Integer Arithmetic

Integer Arithmetic Chapter Ten

10.1 Chapter Overview

This chapter discusses the implementation of arithmetic computation in assembly language. By the
conclusion of this chapter you should be able to translategyéintarithmetic xpressions and assignment
statements from highvel languages lik Fascal and C/C++ into 80x86 assembly language.

10.2 80x86 Integer Arithmetic Instructions

Before describing he to encode arithmeticxpressions in assembly language, @wd be a good idea
to first discuss the remaining arithmetic instructions in the 80x86 instruction sefouBrehapters hva
covered most of the arithmetic and logical instructions, so this section wi tloe fev remaining instruc
tions youll need.

10.2.1 The MUL and IMUL Instructions

The multiplication instructions pvide you with another taste of igelarity in the 80x8& instruction
set. Instructions li€ ADD, SUB, and maw others in the 80x86 instruction set suppoi tvperands. Unfer
tunately there werert’enough bits in the 80x86bpcode byte to support all instructions, so the 80x86 treats
the MUL (unsigned multiply) and IMUL (signed imger multiply) instructions as single operand instruc
tions, like theINC, DEC, andNEG instructions.

Of course, multiplications a two operand functionTo work around this dct, the 80x86 alays
assumes the accumulatai (AX, or EAX) is the destination operanithis irregularity males using multiphi
cation on the 80x86 a little more filiult than other instructions because one operand has to be in the accu
mulator Intel adopted this unorthogonal approach becausg fbke that programmers ould use
multiplication far less often than instructionsdikDD andSUB.

Another problem with the MUL and IMUL instructions is that you cannot multiply the accumulator by
a constant using these instructions. Intel quickly disced the need to support multiplication by a constant
and added the INTMUL instruction tos@rcome this problem. Nertheless, you must bevare that the
basic MUL and IMUL instructions do not support the full range of operands that INTMUL does.

There are tw forms of the multiply instruction: unsigned multiplicatiomuL) and signed multiplica
tion (IMUL). Unlike addition and subtraction, you need separate instructions for theepdvations.

The multiply instructions takthe follaving forms:

Unsigned Multiplication:

“ ”

mul (regg); /1l returns “ax

mul (regsg); /1 returns “dx:ax”
mul (regsy); /1l returns “edx:eax”
mul (menyg); /1l returns “ax”

mul (nemg); /'l returns “dx:ax”
mul (memy,); /'l returns “edx:eax”

Signed (Integer) Multiplication:

“ ”

imul (regg); /1l returns “ax
imul (regie); Il returns “dx:ax”
imul (regzs); /'l returns “edx:eax”

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages87

Chapter Ten Volume Three

imul (meng); /1l returns “ax”
imul (memg); /1l returns “dx:ax”
imul (memy,); /'l returns “edx:eax”

The “returns” alues abee are the strings these instructions return for use with instruction composition
in HLA (see“Instruction Composition in HLA” on pagg58).

(DMUL, available on all 80x86 processors, multiplies eight, sixteen, or thiybitvoperands. Note that
when multiplying tvo n-bit \alues, the result may require as maas 2*n bitsTherefore, if the operand is an
eight bit quantitythe result could require sixteen bits. dikse, a 16 bit operand produces ab82result
and a 32 bit operand requires 64 bits to hold the result.

The (IMUL instruction, with an eight bit operand, multiplies &ieregister by the operand and \es
the 16 bit product iRX. So

mul (operandg);
or i mul (operandg);
computes:

AX := AL * operandg

“*” represents an unsigned multiplicatiéor MUL and a signed multiplication favUL.
If you specify a 16 bit operand, therwL andIMUL compute:
DX AX : = AX * operandqg
“** has the same meanings as ab@andDX:AX means thabX contains the H.O. ard of the 32 bit result
andAX contains the L.O. ard of the 32 bit result. If you're wondering why Intel didn’t put the 32-bit result

in EAX, just note that Intel introduced the MUL and IMUL instructions in the earliest 80x86 processors,
before the advent of 32-bit registers in the 80386 CPU.

If you specify a 32 bit operand, therwL andiIMUL compute the follwing:
EDX: EAX : = EAX * oper ands,

“*” has the same meanings as ab@nd EDX:EAX means thaEDX contains the H.O. doubleord of the
64 bit result andEAX contains the L.O. doubleosd of the 64 bit result.

If an 8x8, 16x16, or 32x32 bit product requires more than eight, sixteen, or thirty-two bits (respec-
tively), theMUL andIMUL instructions set the carry angeasflow flags. MUL andIMUL scramble the sign,
and zero figs.Especially note that the sign and zer flags do not contain meaningful &lues after the
execution of these tw instructions.

To help reduce some of the problems with the use of the MUL and IMUL instructions, Huidlgg@n
extended syntax that alies the follaving two-operand forms:
Unsigned Multiplication:
nul (regg, al);
mul (regg, ax);
mul (regs,, eax);

nul (neng, al);
mul (memg, ax);
mul (nemy,, eax);

mul (constantg, al);
mul (constant 1, ax);
mul (constantz,, eax);

Signed (Integer) Multiplication:

Pages88 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

imul (regg, al);
imul (regys, ax);
imul (regszy, eax);

imul (rmeng, al);
imul (memg, ax);
imul (nemy,, eax);

imul (constantg, al);
imul (constantqg, ax);
imul (constants,, eax);

The two operand forms let you specify the (L.O.) destinatigister The instructions whoseréit oper
and is a rgister or memory location are completely identical to the instructionseabBy specifying the
destination rgister hovever, you can mak your programs easier to read; therefore,dtbbably a good
idea to go ahead and specify the destinatigister Note that just because HLA alls two operands here,
you cant specify an arbitrary ggster The destination operand mustvalys beAL, AX, or EAX, depending
on the source operand.

Note that HLA allevs a form that lets you specify a constamte 80x86 doest’actually support a
MUL or IMUL instruction that has a constant operand. HLA willetéle constant you specify and create a
“variable” in the special “const” gment in memory and initialize thaaniable with this @lue. Then HLA
converts the instruction to the “(NMUL(memory);” instruction. Generallyu won't need to use this spe
cial form since the INTMUL instruction will multiply a géster by a constant.

You'll use the MUL and IMUL instructions quite a bit when you learn abxtgineled precision arith
metic in the chapter oidvancedArithmetic. Until you get to that chapteou'll probably just vant to use
the INTMUL instruction in place of the MUL or IMUL since it is more generalwEer, INTMUL is not a
complete replacement for theseotimstructions. Besides the number of operands, there wemkdifer-
ences between the INTMUL instruction yee'learned about earlier and the MUL and IMUL instructions.
Speciftally for the INTMUL instruction:

* There isn’t an 8x8 bit INTMUL instruction available (the immedjatperands simply prade

a shorter form of the instruction. Internally, the CPU sign extends the operand to 16 or 32 bits
as necessary).

e The INTMUL instruction does not produce a 2*n bit result. That is, a 16x16 multiply produces
a 16 bit result. Likewise, a 32x32 bit multiply produces a 32 bit result. These instructions set
the carry and overflow flags if the result does not fit into the destination register.

10.2.2 The DIV and IDIV Instructions

The 80x86 diide instructions perform a 64/32viion, a 32/16 dision or a 16/8 dision. These
instructions tak the form:

div(regg); /1l returns “al”
div(regsg); /1 returns “ax”
div(regs,); /1l returns “eax”
div(regg, AX); /1 returns “al”

div(reg;g, DXAX);
div(regs,, EDX EAX);

div(neng); /1l returns “al”
div(nemg); /'l returns “ax”
div(nemy,); /1l returns “eax”

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages89

Chapter Ten Volume Three

div(neng, AX); /1l returns “al”
div(memg, DX AX); /'l returns “ax”
di v(nmemy,, EDX EAX); /! returns “eax”
div(constantg, AX); I/l returns “al”
div(constant,g, DX AX); /'l returns “ax”

”

di v(constantgs,, EDX EAX); /1 returns “eax

idiv(regg); /1l returns “al”
idiv(regg); /1l returns “ax”
idiv(regss); // returns “eax”
idiv(regg, AX); // returns “al”
idiv(regig, DXAX); /1l returns “ax”
idiv(regzy, EDX EAX); // returns “eax”
idiv(meny); // returns “al”
idiv(memg); I/ returns “ax”
idiv(mem,); /'l returns “eax”
idiv(menyg, AX); I/l returns “al”
idiv(memg, DX AX); /'l returns “ax”
idiv(mem,, EDX EAX); /'l returns “eax”
idiv(constantg, AX); Il returns “al”

idiv(constant,g DX AX); /'l returns *“ax”

idiv(constants,, EDXEAX); // returns “eax”

The DIV instruction computes an unsignedislion. If the operand is an eight bit operabdly divides
the AX register by the operand leiag the quotient iAL and the remainder (modulo) AH. If the operand
is a 16 bit quantitythen theDIV instruction dvides the 32 bit quantity iDX:AX by the operand le@ng the
guotient inAX and the remainder in DXVith 32 bit operand®IV divides the 64 bit alue iInEDX:EAX by
the operand ladng the quotient ilEAX and the remainder EBDX.

You cannot, on the 80x86, simplyvidie one eight bit alue by anotherlf the denominator is an
eightbit value, the numerator must be a sixteen #iti®. If you need to dide one unsigned eigbtt value
by anotheryou must zerox@end the numerator to sixteen bi¥au can accomplish this by loading the
numerator into theL register and then nwing zero into theAH register Then you can dide AX by the
denominator operand to produce the correct reBaiting to zero extend AL before executing DIV may
cause the 80x86 to produce incorrect results!

When you need to dide two 16 bit unsignedalues, you must zerxtend theAX register (which con
tains the numerator) into teX register To do this, just load zero into tiex register If you need to dide
one 32-bit alue by anothelyou must zerox@end theEAX register intoEDX (by loading a zero int&DX)
before the diision.

When dealing with signed irder values you will need to signxendAL into AX, AX into DX or EAX
into EDX before gecutingIDIV. To do so, use theBW, CWD, CDQ, orMOVSX instructions. If the H.O. byte
or word does not already contain sigeént bits, then you must sigrtend the wlue in the accumulator
(AL/AX/EAX) before doing théDIV operation. Bilure to do so may produce incorrect results.

There is one other catch to the 80x8@kvide instructions: you can get atél error when using this
instruction. First, of course, you can attempt toddi a \alue by zero. Second, the quotient may be tagelar
to fit into theEAX, AX, or AL register For example, the 16/8 dision “$8000 / 2" produces the quotient
$4000 with a remainder of zero. $4000 will nbfrfto eight bits. If this happens, or you attempt tad# by
zero, the 80x86 will generate @&r.DivisionError exception or intger oserflow error gx.Intolnstr). This
usually means your program will display the appropriate dialog box and abort your program. If this happens

Pages90 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

to you, chances are you ditlisign or zeroxend your numerator beforeexuting the diision operation.
Since this error will cause your program to crash, you shoulcehecareful about thealues you select
when using diision. Of course, you can use tA®Y..ENDTRY block with the ex.DivisionError and
ex.Intolnstr to trap this problem in your program.

The carry overflow, sign, and zerodhgs are undefed after a dision operation. Lik MUL and IMUL,
HLA provides special syntax to allothe use of constant operand&m though these instructions don’
really support them.

The 80x86 does not primle a separate instruction to compute the remainder of one nuniokedddy
another The DIV and IDIV instructions automatically compute the remainder at the same tiyneothe
pute the quotient. HLA, leever, provides mnemonics (instructions) for the MOD and IMOD instructions.
These special HLA instructions compile into thxa@ same code as their DIV and IDIV counterpatise
only difference is the “returns”alue for the instruction (since these instructions return the remainder in a
different location than the quotienffhe MOD and IMOD instructions that HLA supports are

nod(regg); // returns “ah”
nod(regqg); /1l returns “dx”
nod(regsy); /'l returns “edx”
nod(regg, AX); // returns “ah”
nod(reg;g, DX AX); Il returns “dx”
nmod(regzy, EDX EAX); /'l returns “edx”
nmod(meny); I/ returns “ah”
nod(nemg); /1 returns “dx”
nod(memy,); /1 returns “edx”
nod(meng, AX); /1l returns “ah”
mod(nmemg, DX AX); /] returns “dx”
nod(nenmy,, EDX EAX); /1 returns “edx”
nod(constantg, AX); I/ returns “ah”
nod(constant 15, DX AX); /1 returns “dx”

nod(constant 3,, EDX EAX); /1 returns “edx”

imod(regg); // returns “ah”
imod(regig); // returns “dx”
imod(regzs); I/ returns “edx”
imod(regg, AX); /1 returns “ah”
inod(reg;q, DX AX); I/ returns “dx”
imod(regzp, EDX EAX); [l returns “edx”
imod(menyg); I/ returns “ah”
inod(nmemg); /1l returns “dx”
imod(nmemy,); /'l returns “edx”
imod(meny, AX); I/ returns “ah”
imod(memg, DX AX); /1 returns “dx”
i nod(nemy,, EDX EAX); /1 returns “edx”
imod(constantg, AX); I/ returns “ah”
i mod(constant g5, DX AX); /1 returns “dx”

imod(constantz,, EDXEAX); // returns “edx”

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb9l

Chapter Ten Volume Three

10.2.3 The CMP Instruction

The CMP (compare) instruction is identical to tB&B instruction with one crucial dérence — it does
not store the diérence back into the destination operaftte syntax for th€MP instruction is similar to
SUB (though the operands are reversed so it reads better), the generic form is

cnp(LeftQperand, R ght(perand);

This instruction computes “LeftOperand - RightOperand” (note tersal from SUB). The specific forms
are

cnp(reg, reg); /1 Registers must be the sane size (8, 16, or 32 bits)
cnp(reg, mem); /1 Sizes nmust match.

cnp(reg, constant);

cnp(mem constant);

Note that both operands are “source” operands, sathéhat a constant appears as the second operand is
okay.

The CMP instruction updates the 80x86flagsaccording to the result of the subtraction operation
(LeftOperand - RightOperand).he flags are generally set in an appropriathfon so that we can read this
instruction as “compare LeftOperand to RightOperandSu can test the result of the comparison by check
ing the appropriatedbs in the #igs rgister using the conditional set instructions (see thé sextion) or
the conditional jump instructions.

Probably the fst place to start whenxgloring theCMP instruction is to ta& a look at ¥actly hav the
CMP instruction affiects the fhgs. Consider the folldng CMP instruction:

cnp(ax, bx);

This instruction performs the computatiai - BX and sets thedhs depending upon the result of the
computationThe flags are set as folis:

Z: The zero flag is set if and onlyAiX = BX. This is the only time AX - BXproduces a zero result.
Hence, you can use the zero flag to test for equality or inequality.

S: The sign flag is set to one if the result is negative. At first glance, you might think that this flag
would be set iAX is less thaBX but this isn’t always the case.AK=$7FFF andX= -1 ($FFFF)
subtractingAX from BX produces $8000, which is gettive (and so the sign flag will be set). So, for
signed comparisons anyway, the sign flag doesn’t contain the proper status. For unsigned operands,
considerAX=$FFFF and3X=1. AX is greater thamX but their difference is $FFFE which is still
negative. As it turns out, the sign flag and the overflow flag, taken together, can be used for compar
ing two signed values.

O: The overflow flag is set afterGvP operation if the dference ofaAX andBX produced anwerflow
or underflow. As mentioned above, the sign flag and the overflow flag are both used when perform
ing signed comparisons.

C: The carry flag is set after@P operation if subtracting BXrom AX requires a borme. This
occurs only whelX is less thamBX whereAX andBX are both unsignedalues.

Given that the CMRnstruction sets theds in this &shion, you can test the comparison of the tw
operands with the follwing flags:

cnp(Left, Rght);

Pages92 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

Table 1: Condition Code Settings After CMP

Unsigned operands: Signed operands:
Z: equality/inequality Z: equality/inequality
C. Left < Right (C=1) C: no meaning
Left >= Right (C=0)
S: no meaning S: see below
O: no meaning O: see below

For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:
If ((S=0) and (O=1)) or ((S=1) and (0=0)) then Left < Right when using a signed comparison.
If ((S=0) and (0=0)) or ((S=1) and (O=1)) then Left >= Right when using a signed comparison.

Note that (S xor O) is one if the left operand is less than the right operand. Conversely, (S xor O) is zero if
the left operand is greater or equal to the right operand.

To understand why these flags are set in this manner, consider the following examples:

Left m nus R ght S (0]
$FFFF (-1) - $FFFE (-2) 0 0
$8000 - $0001 0 1
$FFFE (-2) - $FFFF (- 1) 1 0
$7FFF (32767) - $FFFF (-1) 1 1

Rememberthe CMPoperation is really a subtraction, therefore, thst fixample abwe computes
(-1)-(-2) which is (+1).The result is posite and an eerflow did not occur so both the S and @gi are
zero. Since (S xor O) is zero, Left is greater than or equal to Right.

In the second»ample, the CMRnstruction would compute (-32768)-(+1) which is (-32769). Since a
16-bit signed intger cannot represent thialue, the alue wraps around to $7FFF (+32767) and sets the
overflow flag. The result is posite (at least as a 16 bialie) so the CPU clears the sigagfl (S xor O) is
one here, sbeft is less thamight.

In the third @ample abwe, CMPcomputes (-2)-(-1) which produces (-1). Needlow occurred so the
O flag is zero, the result is gegive so the signdlg is one. Since (S xor O) is one, Left is less than Right.

In the fourth (and fial) example,CMP computes (+32767)-(-1)his produces (+32768), setting the
overflow flag. Furthermore, thealue wraps around to $8000 (-32768) so the sagnifl set as well. Since (S
xor O) is zero, Left is greater than or equal to Right.

10.2.4 The SETcc Instructions

Theset on condition (or SETcc) instructions set a single byte operangjigtr or memory location) to
zero or one depending on tha@uwes in the #gs rgister The general formats for tf&ETcc instructions are

setcc(regg);
setcc(meny);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages93

Chapter Ten Volume Three

SETcc represents a mnemonic appearing in theioilg tables. These instructions store a zero into the cor
responding operand if the condition is false, they store a one into the eight bit operand if the condition is

true.
Table 2: SETcc Instructions That Test Flags

Instruction Description Condition Comments
SETC Set if carry Carry =1 Same as SETB, SEAE
SETNC Set if no carry Carry =0 Same as SETNB, SETAE
SETZ Set if zero Zero=1 Same as SETE
SETNZ Set if not zero Zero=0 Same as SETNE
SETS Set if sign Sign=1
SETNS Set if no sign Sign=0
SETO Set if overflow Ovrflw=1
SETNO Set if no overflow | Ovrflw=0
SETP Set if parity Parity = 1 Same as SETPE
SETPE Set if parity even | Parity = 1 Same as SETP
SETNP Set if no parity Parity = 0 Same as SETPO
SETPO Set if parity odd Parity =0 Same as SETNP

The SETcc instructions abee simply test the digs without ay other meaning attached to the operation.
You could, for gample, useSETC to check the carrydl after a shift, rotate, bit test, or arithmetic operation.

You might notice the SETBETPE, and SETNP instructions abo They check theparity flag. These
instructions appear here for completenessils text will not consider the uses of the paritgtdl

TheCMP instruction vorks synegistically with theSETcc instructions. Immediately afterGMP oper
ation the processorafy)s preide information concerning the relaivalues of those operandehey allow

you to see if one operand is less than, equal to, greater thay, @rmabination of these.

There are tw additional groups d8ETcc instructions that areery useful after &@MP operation.The

first group deals with the result of ansigned comparisonthe second group deals with the result of a

signed comparison

Page594

© 2001, By Randall Hyde

Beta Draft - Do not distribute

Integer Arithmetic

Table 3: SETcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

SETA Set if above (>) Carry=0, Zero=0 | Same as SETNBE

SETNBE Set if not below or | Carry=0, Zero=0 | Same as SETA
equal (not <=)

SETAE Set if above or Carry =0 Same as SETNC, SETNB
equal (>=)

SETNB Set if not below Carry =0 Same as SETNC, SETAE
(not <)

SETB Set if below (<) Carry =1 Same as SETC, SETNAE

SETNAE Set if not above or | Carry =1 Same as SETC, SETB
equal (not >=)

SETBE Set if below or Carry = 1 or Zero =| Same as SETNA
equal (<=) 1

SETNA Set if not above Carry = 1 or Zero =| Same as SETBE
(not >) 1

SETE Set if equal (=) Zero=1 Same as SETZ

SETNE Setif not equal®) | Zero=0 Same as SETNZ

The corresponding table for signed comparisons is

Table 4: SETcc Instructions for Signed Comparisons

Instruction Description Condition Comments
SETG Set if greater (>) Sign = Ovrflv and | Same as SETNLE
Zero=0

SETNLE Set if not less than| Sign = Ovrflw or Same as SETG
or equal (not<=) | Zero=0

SETGE Set if greater than | Sign = Ovrflw Same as SETNL
or equal (>=)

SETNL Set if not less than| Sign = Ovrflw Same as SETGE
(not <)

SETL Set if less than (<) | Sign# Ovrflw Same as SETNGE

Beta Draft - Do not distribute

© 2001, By Randall Hyde

Pageb95

Chapter Ten Volume Three

Table 4: SETcc Instructions br Signed Comparisons

Instruction Description Condition Comments

SETNGE Set if not greater or Sign# Ovrflw Same as SETL
equal (not >=)

SETLE Set if less than or | Sign# Ovrflw or Same as SETNG
equal (<=) Zero=1

SETNG Set if not greater | Sign# Ovrflw or Same as SETLE
than (not >) Zero=1

SETE Set if equal (=) Zero=1 Same as SETZ

SETNE Set if not equal®) | Zero=0 Same as SETNZ

The SETcc instructions are particularlyaluable because thean comert the result of a comparison to
a boolean alue (lse/true or 0/1)This is especially important when translating statements from a lvigih le
language lik Rascal or C/C++ into assembly languag@be folloving example shas hav to use these
instructions in this manner:

/] Bool := A<=1B

nmov(A eax);
cnp(eax, B);
setl e(bool); /1 bool is a boolean or byte variable.

Since theSETcc instructions akays produce zero or one, you can use the results witANideandOR
instructions to compute compgl®oolean alues:

/1 Bool :=((A<=B) and (D= F))

nmov(A eax);
cnp(eax, B);
setle(bl);
nov(D, eax);
cnp(eax, E);
sete(bh);

and(bl, bh);
nmov(bh, Bool);

For more examples, sékeogical (Boolean) Expressions” on page4

10.2.5 The TEST Instruction

The 80x86TEST instruction is to th&ND instruction what the CMP instruction is to SUBhat is, the
TEST instruction computes the logi@eND of its two operands and sets the condition codgsflbased on
the result; it does not, iva@ver, store the result of the logicAND back into the destination operandhe
syntax for theTEST instruction is similar tAND, it is

test(operandl, operand2);
TheTEST instruction sets the zeradlif the result of the logicAIND operation is zero. It sets the sign
flag if the H.O. bit of the result contains a of&ST alvays clears the carry andesflow flags.

The primary use of th€EST instruction is to check to see if an indual bit contains a zero or a one.
Consider the instruction “test(AL);” This instruction logicall ANDs AL with the value one; if bit one of
AL contains zero, the result will be zero (setting the zexg) fince all the other bits in the constant one are

Pageb96 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

zero. Cowersely if bit one of AL contains one, then the result is not zeroT&ST clears the zeroafy.
Therefore, you can test the zeraxflafter thiSTEST instruction to see if bit zero contains a zero or a one.

The TEST instruction can also check to see if all the bits in a spe@git of bits contain zeralhe
instruction “test($FAL);” sets the zero #g if and only if the L.O. four bits &L all contain zero.

One \ery important use of th€EST instruction is to check to see if ajister contains zeroThe
instruction “TEST(rg, reg);” where both operands are the sanggster will logicallyAND that register
with itself. If the rgister contains zero, then the result is zero and the CPU will set theazprdifivever,
if the register contains a non-zeralue, logicallyANDing that \alue with itself produces that same non-zero
value, so the CPU clears the zeagfl Therefore, you can test the zeragfimmediately after thexecution
of this instruction (e.g., using the SETZ or SETNZ instructions) to see ifdgistelecontains zero. E.g.,

test(eax, eax);
setz(bl); /1 BL is set to one if EAX contains zero.

10.3 Arithmetic Expressions

Probably the biggest shock todieners &cing assembly language for thery first time is the lack of
familiar arithmetic gpressionsArithmetic expressions, in most highvel languages, look similar to their
algebraic equalents, e.g.,

X =Y*Z,
In assembly language, ydineed several statements to accomplish this same task, e.g.,

mov(y, eax);
intmul (z, eax);
nov(eax, X);

Obviously the HLL version is much easier to type, read, and understand. This point, more than any other, is
responsible for scaring people away from assembly language.

Although there is a lot of typing involved, converting an arithmetic expression into assembly language
isn’'t difficult at all. By attacking the problem in steps, the same way you would solve the problem by hand,
you can easily break down any arithmetic expression into an equivalent sequence of assembly language
statements. By learning how to convert such expressions to assembly language in three steps, you’ll discover
there is little difficulty to this task.

10.3.1 Simple Assignments

The easiestx@ressions to cort to assembly language are the simple assignments. Simple- assign
ments cop a single alue into a griable and ta& one of tvo forms:

vari abl e : = const ant
or

variable := variable

Corverting the first form to assembly language is trivial, just use the assembly language statement:
nov(constant, variable);

This MOV instruction copies the constant into the variable.

The second assignment above is slightelly more complicated since the 80x86 doesn’t provide a mem-
ory—to-memoryMOV instruction. Therefore, to copone memory &riable into anotheyou must mee the
data through a gister By corvention (and for slight &tieng/ reasons), most programmers tend to use
AL/AX/EAX for this purpose. If theAL, AX, or EAX register is &ailable, you should use it for this opera
tion. For example,

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages97

Chapter Ten Volume Three

varl : = var2;

becomes

nov(var2, eax);
nov(eax, varl);

This is assuming, of course, thar1 andvar2 are 32-bit variables. Use AL if they are eight bit variables,
use AX if they are 16-bit variables.

Of course, if you're already using AL, AX, or EAX for something else, one of the other registers will
suffice. Regardless, you must use a register to transfer one memory location to another.

Although the 80x86 does not support a memory-to-memory move, HLA does provide an extended syn-
tax for the MOV instruction that allows two memory operands. However, both operands have to be 16-bit or
32-bit values; eight-bit values won’t work. Assuming you want to copy the value of a word or dword object
to another variable, you can use the following syntax:

nov(var2, varl);

HLA translates this “instruction” into the folling two instruction sequence:

push(var2);
pop(varl);

Although this is slightly skwer than the two MOV instructions, it is convenient.

10.3.2 Simple Expressions

The net level of compleity up from a simple assignment is a simpteressionA simple pression
takes the form:

var, :=term op term;
Varl is a \ariable,term1 andterm2 are \ariables or constants, angd is some arithmetic operator (addition,
subtraction, multiplication, etc.).

As simple as this expression appears, most expressions take this form. It should come as no surprise
then, that the 80x86 architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the following form:

nov(term, eax);
op(term, eax);
nov(eax, varq)

Op is the mnemonic that corresponds to the sgetidperation (e.g., “+” add, “-” = sub, etc.).

There are a fg inconsistencies you need to weaae of. Of course, when dealing with the multiply and
divide instructions on the 80x86, you must useAhPAX/EAX andDX/EDX registers.You cannot use arbi
trary registers as you can with other operatiohiso, dont forget the signdension instructions if yote
performing a diision operation and yoré dividing one 16/32 bit number by anothEmally, dont forget
that some instructions may causeidlow. You may vant to check for anwerflow (or underfbw) condition
after an arithmetic operation.

Examples of common simple@ressions:
X 1=y +z

nov(y, eax);
add(z, eax);
nov(eax, X);

Pageb98 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

mov(y, eax);
sub(z, eax);
nov(eax, X);

x 1=y * z; {unsi gned}

nov(y, eax);
mul (z, eax); /1 Don’t forget this w pes out EDX
mov(eax, X);

x 1=y div z; {unsigned div}

mov(y, eax);

nov(0, edx); /1 Zero extend EAX i nto EDX
div(z, edx:eax);

nov(eax, X);

x :=yidiv z; {signed div}

nov(y, eax);

cdq(); /1 Sign extend EAX i nto EDX
idiv(z, edx:eax);

mov(eax, z);

x =y mod z; {unsigned renai nder}

mov(y, eax);

nov(0, edx); /1 Zero extend EAX i nto EDX
mod(z, edx:eax);
nov(edx, X); /1 Note that renainder is in EDX

X :=y inod z; {signed remainder}

nov(y, eax);

cdq(); /1 Sign extend EAX i nto EDX
inmod(z, edx:eax);
mov(edx, X); /! Renmainder is in EDX

Certain unary operations also qualify as simpigressionsA good example of a unary operation is
negation. In a high eel language rgation tales one of tw possible forms:

var := -var or varq := -var,

Note thatvar := -constant is really a simple assignment, not a simplpression. You can specify a negative
constant as an operand to eV instruction:

nov(-14, var);

To handle “ar = -\ar;” use the single assembly language statement:
/1l var = -var;
neg(var);

If two different \ariables are wolved, then use the follang:

/1 varl = -var?2;

nov(var,, eax);
neg(eax);
nov(eax, varq);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb99

Chapter Ten Volume Three

10.3.3 Complex Expressions

A complex expression is anarithmetic &pression imolving more than tw terms and one operator
Such epressions are commonly found in programs written in a higdl language. Compkeexpressions
may include parentheses teeoride operator precedence, function calls, array accesses/hélethe con
version of some compleexpressions to assembly languageaisly straight-forvard, others require some
effort. This section outlines the rules you use tovesnsuch gpressions.

A complex expression that is easy to a@mt to assembly language is one thabives three terms and
two operators, fonample:

Wi=w-Yy - z

Clearly the straight-forard assembly language conversion of this statement will requireW&anstruc
tions. However, even with an expression as simple as this one, the conversion is not trivial. There are actually
two ways to convert this from the statement above into assembly language:

nmov(w, eax);
sub(y, eax);
sub(z, eax);
nov(eax, w);
and
nov(y, eax);
sub(z, eax);
sub(eax, w);

The second caersion, since it is shorter, looks better. However, it produces an incorrect result (assuming
Pascal-like semantics for the original statement). Associativity is the problem. The second sequence above
computes W := W - (Y - Z) which is not the same as W := (W -Y) - Z. How we place the parentheses around
the subexpressions can affect the result. Note that if you are interested in a shorter form, you can-use the fol
lowing sequence:

mov(y, eax);
add(z, eax);
sub(eax, w);

This compute®V:=W-(Y+Z). This is equivalent to W := (W -Y) - Z.
Precedence is another issue. Consider the Pascal expression:
X:=W* Y+ 7
Once agin there are two ways we can evaluate this expression:

X:i=(W*Y) + Z
or
X = W* (Y + 2),;

By now, you're probably thinking that this text is crazy. Everyone knows the correct way to evaluate these

expressions is the second form provided in these two examples. However, you're wrong to think that way.
The APL programming language, for example, evaluates expressions solely from right to left and does not
give one operator precedence over another.

Most high level languages use a fixed set of precedence rules to describe the order of evaluation in an
expression involving two or more different operators. Such programming languages usually compute multi-
plication and division before addition and subtraction. Those that support exponentiation (e.g., FORTRAN
and BASIC) usually compute that before multiplication and division. These rules are intuitive since almost
eweryone learns them before high school. Consider the expression:

X opy Yop, Z

If op, takes precedence over pihen this galuates to (X opY) op, Z otherwise if op takes precedence
over op then this galuates to X op(Y op, Z). Depending upon the operators and operanadvied, these
two computations could produce different results.

Page600 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

When cowerting an gpression of this form into assembly language, you must be sure to compute the
subepression with the highest precedencstfirhe folloving example demonstrates this technique:

Il w:=x+y* z

nov(X, ebx);

nov(y, eax); /1 Mist conpute y*z first since “*”
intnul (z, eax); /1 has higher precedence than “+".
add(ebx, eax);

nov(eax, w);

If two operators appearing within axpeession hae the same precedence, then you determine the order
of evaluation usingassociativity rules Most operators aneft associative meaning that theevaluate from
left to right. Addition, subtraction, multiplication, andviion are all left associat. A right associative
operator ealuates from right to leffThe exponentiation operator in FORAN and BASIC is a good xam
ple of a right associat operator:

27273 is equal to 2°(273) not (272)"3

The precedence and assowisfirules determine the order ofauation. Indirectlythese rules tell you
where to place parentheses in &pression to determine the order gékiation. Of course, you canalys
use parentheses toasride the defult precedence and assodidyi. However, the ultimate point is that your
assembly code must complete certain operations before others to correctly compataette @ gien
expressionThe folloving examples demonstrate this principle:

Il w:=x-vy-z

nmov(X, eax); /1 Al the same operator, so we need
sub(y, eax); // to evaluate fromleft to right

sub(z, eax); /1 because they all have the sane

mov(eax, w); /'l precedence and are | eft associative.

Il w:=x+y*z

mov(y, eax); /1 Mist conpute Y * Z first since
intmul (z, eax); /1 multiplication has a higher
add(x, eax); /1 precedence than addition.

nov(eax, w);

Il w:=x1vy- 1z

nov(X, eax); /1 Here we need to conpute division
cdq(); /1 first since it has the highest
idiv(y, edx:eax); // precedence.

sub(z, eax);

mov(eax, w);

Il w:=x*y*z

mov(y, eax); /1 Addition and nultiplication are
intmul (z, eax); /1 commutative, therefore the order
intmul (x, eax); /1 of evaluation does not natter

nov(eax, w);

There is onexxeption to the associatiy rule. If an expression imolves multiplication and dision it is
generally better to perform the multiplicatiorsfi For example, gven an gpression of the form:

W:=XY?* Z /1 Note: thisis ¥xz not ——1
y yXz
It is usually better to computez and then diide the result by rather than dide X by Y and multiply the
guotient byz. There are two reasons this approach is better. First, remember thisttthénstruction
always produces a 64 bit result (assuming 32 bit operands). By doing the multiplication first, you automati
cally sign extend the product into th&€DX register so you do not have to sign ext&X prior to the dii-
sion. This saves the execution of €@Q instruction A second reason for doing the multiplication first is to

Beta Draft - Do not distribute © 2001, By Randall Hyde Page601

Chapter Ten Volume Three

increase the accunaof the computation. Remember, (integer) division often produces an inexact result. For
example, if you compute 5/2 you will get the value two, not 2.5. Computing (5/2)*3 produces six. However,
if you compute (5*3)/2 you get the value seven which is a little closer to the real quotient (7.5). Therefore, if
you encounter an expression of the form:

w = x/y*z;
You can usually convert it to the assembly code:

nov(X, eax);

imul (z, eax); /!l Note the use of | ML, not | NTMUL!
idiv(y, edx:eax);

nov(eax, w);

Of course, if the algorithm yorg encoding depends on the truncation effect of the division operation, you
cannot use this trick to improve the algorithm. Moral of the story: always make sure you fully understand
any expression you are converting to assembly language. Obviously if the semantics dictate that you must
perform the division first, do so.

Consider the following Pascal statement:
W:i=X-Yy*Xx

This is similar to a prdous example except it uses subtraction rather than addition. Since subtraction is not
commutative, you cannot compute z and then subtract from this result. This tends to complicate the
conversion a tiny amount. Rather than a straight forward multiply and addition sequence, you'll have to load
x into a register, multiply andz leaving their product in a different register, and then subtract this product
fromx, e.g.,

nmov(X, ebx);
nmov(y, eax);
intmul (X, eax);
sub(eax, ebx);
nov(ebx, w);

This is a trvial example that demonstrates the needdoporary variablesin an expression. This code uses
the EBX register to temporarily hold a copy stintil it computes the product gfandz. As your expressions
increase in complexity, the need for temporaries grows. Consider the following Pascal statement:

w:=(a+b) * (y+2);

Following the normal rules of algebraic evaluation, you compute the subexpressions inside the parentheses
(i.e., the two subexpressions with the highest precedence) first and set their values aside. When you com
puted the values for both subexpressions you can compute their sum. One way to deal with complex expres
sions like this one is to reduce it to a sequence of simple expressions whose results wind up in temporary
variables. For example, we can convert the single expression above into the following sequence:

Tenp; := a + b;

Tenp, :=y + z;
w = Tenp; * Tenpy;

Since cowerting simple expressions to assembly language is quite easy, it's now a shap to compute the
former, complex, expression in assembly. The code is

nov(a, eax);

add(b, eax);

nov(eax, Tenpl);
mov(y, eax);

add(z, eax);

nov(eax, Tenp2);
nov(Tenpl, eax);
intmul (Tenp2, eax);
nov(eax, w);

Page602 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

Of course, this code is grossly ifieflent and it requires that you declare a couple of temporary variables in
your data segment. However, it is very easy to optimize this code by keeping temporary variables, as much
as possible, in 80x86 registers. By using 80x86 registers to hold the temporary results this code becomes:

nov(a,
add(b,
mov(vy,
add(z,

i ntmul (

eax);
eax);
ebx);
ebx);
ebx, eax);

nov(eax, w);
Yet another example:
X 1= (y+z) * (a-b) / 10;

This can be corerted to a set of four simple expressions:

Tenpl : = (y+z)
Tenp2 : = (a-b)
Tenpl : = Tenpl * Tenp2

X := Tenpl / 10

You can convert these four simple expressions into the assembly language statements:

nov(y, eax); /1 Conpute eax = y+z
add(z, eax);
nov(a, ebx); /1 Conpute ebx = a-b
sub(b, ebx);

imul (ebx, eax);
idiv(10, edx:eax);
nov(eax, X);

/1 This also sign extends eax into edx.

The most important thing taelep in mind is that temporangalues if possible, should beelpt in rgis-
ters. Rememberccessing an 80x86gister is much more &fient than accessing a memory location. Use
memory locations to hold temporaries only if wairun out of rgisters to use.

Ultimately, corverting a compbe expression to assembly language is littlded#nt than solving the
expression by hand. Instead of actually computing the result at each stage of the computation, you simply
write the assembly code that computes the results. Since you were probably taught to compute only one
operation at a time, this means that manual computatioksvon “simple gpressions” thatxast in a com
plex expression. Of course, coerting those simplexpressions to assembly wirfly trivial. Therefore, ayp
one who can sobsa comple expression by hand can ogt it to assembly language foling the rules for
simple pressions.

10.3.4 Commutative Operators

If “@” represents some operatdhat operator isommutative if the following relationship is alays
true:

(A @B = (B @A

As you s& in the preious section, commutat operators are nice because the order of their operands
is immaterial and this lets you rearrange a computation, often making that computation easier di-more ef
cient. Often, rearranging a computationabloyou to use fger temporary ariablesWhene&er you encoun
ter a commutatie operator in anx@ression, you shouldwhys check to see if there is a better sequence you
can use to impre the size or speed of your codiée folloving tables list the commutaé and non-com
mutative operators you typicallyrfd in high leel languages:

Beta Draft - Do not distribute © 2001, By Randall Hyde Page603

Chapter Ten

Volume Three

Table 5: Some Common Commutative Binary Operators

Pascal | C/C++ Description
+ + Addition
* * Multiplication
AND && or & | Logical or bitwise AND
OR || or | Logical or bitwise OR
XOR A (Logical or) Bitwise exclusive-OR
= == Equality
<> I= Inequality

Table 6: Some Common Noncommutative Binary Operators

Pascal | C/C++ Description
- - Subtraction
[orDIV |/ Division
MOD % Modulo or remainder
< < Less than
<= <= Less than or equal
> > Greater than
>= >= Greater than or equal

10.4 Logical (Boolean) Expressions

Consider the follwing expression from adscal program:
B:= ((X=Y) and (A<= Q) or ((ZA <> 5);

B is a booleanariable and the remaining variables are all integers.

How do we represent boolean variables in assembly language? Although it takes only a single bit to rep-
resent a boolean value, most assembly language programmers allocate a whole byte or word for this purpose
(as such, HLA also allocates a whole byte for a BOOLEAN variable). With a byte, there are 256 possible
values we can use to represent the two vatluesandfalse. So which tve values (or which te sets of al-
ues) do we use to represent these boolahres? Because of the mach@afchitecture, i€ much easier to
test for conditions lig zero or not zero and poséior ngative rather than to test for one ofavparticular
boolean walues. Most programmers (and, indeed, some programming languagég”likchoose zero to
representdlse and aything else to represent tru8ome people prefer to represent true atskfwith one

Page604

© 2001, By Randall Hyde

Beta Draft - Do not distribute

Integer Arithmetic

and zero (respestly) and not alle ary other \alues. Others select all one bits ($FFFF_FERFFFFE or
$FF) for true and 0 forafse.You could also use a positivalue for true and a gative value for lse.All
these mechanismsyetheir avn adwantages and dndbacks.

Using only zero and one to represeaisé and true &rs two very big adantages: (1he SETcc
instructions produce these results so this scheme is compatible with those instructions; (2) the 80x86 logical
instructions AND, OR, XOR and, to a lesserxtent, NOT) operate on thesealues gactly as you wuld
expect That is, if you hae two boolean ariablesA andB, then the follwing instructions perform the basic
logical operations on thesedwariables:

// ¢ = a AND b;

mov(a, al);

and(b, al);
nov(al, c);
/Il ¢ =aCRb;

nov(a, al);
or(b, al);
mov(al, c);

/Il ¢ =a XR b;
nov(a, al);

xor(b, al);
nmov(al, c);

// b = not a;

mov(a, al); // Note that the NOT instructi on does not

not(al); /1l properly conpute al = not al by itself.
and(1, al); /Il 1.e., (not 0) does not equal one. The AND
nmov(al, b); /1 instruction corrects this problem

nov(a, al); /1 Another way to do b = not a;

xor(1, al); /] Inverts bit zero.

mov(al, b);

Note, as pointed out abe, that theNOT instruction will not properly compute logical gegion. The bitwise

not of zero is $FF and the bitwise not of one is $FE. Neither result is zero or one. However, by ANDing the
result with one you get the proper result. Note that you can implement thep&dation more étiently

using the %or(1, ax);” instruction since it only &cts the L.O. bit.

As it turns out, using zero for false and anything else for true has a lot of subtle advantages. Specifically,
the test for true or false is often implicit in the execution of any logical instruction. However, this mechanism
suffers from a very big disadvantage: you cannot use the 80XB6OR, XOR, andNOT instructions to
implement the boolean operations of the same name. Considercthvalivs $55 and $AAThey're both
non-zero so theboth represent thealue true. Havever, if you logicallyAND $55 and $AA together using
the 80x86AND instruction, the result is zerdrue AND true should produce true, natse. Although you
can account for situations &khis, it usually requires avfieextra instructions and is sombat less dicient
when computing boolean operations.

A system that uses non-zeralwes to represent true and zero to represdse fs ararithmetic logical
system. A system that uses the awdistinct \alues lile zero and one to represealse and true is called a
boolean logical system, or simply a boolean systefviou can use either system, as\@nmient. Consider
again the booleanxgression:

B:=((X=Y) and (A<=D)) or ((Z-A <> 5);
The simple gpressions resulting from this expression might be:

nov(X, eax);
cnp(y, eax);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page605

Chapter Ten Volume Three

sete(al); /Il AL :=x =y,
nov(a, ebx);
cnp(ebx, d);
setle(bl); // BL :=a <= d;

and(al, bl); /1 BL :=(x=y) and (a <= d);

nmov(z, eax);

sub(a, eax);

cnp(eax, 5);

setne(al);

or(bl, al); /1 AL := ((X=Y) and (A <=D)) or ((Z-A <> 5);
mov(al, b);

When working with boolean xpressions dom’forget the that you might be able to optimize your code
by simplifying those booleanxpressionsYou can use algebraic transformations (especially Dgaicy
theorems) to help reduce the conxthe of an epression. In the chapter onnldevel control structures
you'll also see hw to use control éw to calculate a boolean resulthis is generally quite a bit morefief
cient than usingomplete boolean evaluation as the gamples in this section teach.

10.5 Machine and Arithmetic Idioms

An idiom is an idiosyncrasyseveral arithmetic operations and 80x86 instructiongehdiosyncrasies
that you can tak adwantage of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as “tjckrogramming” that you shouldvedys aoid in well written pre
grams.While it is wise to ®oid tricks just for the sakof tricks, mayp machine and arithmetic idioms are
well-known and commonly found in assembly language programs. Some of them can be reg|lutriak
good number of them are simply “tricks of the traddis text cannot gen bgin to present all of the idioms
in common use today; there too numerous and the list is constantly changingerieless, there are
some ‘ery important idioms that you will see all the time, so it esagense to discuss those.

10.5.1 Multiplying without MUL, IMUL, or INTMUL

If you tale a quick look at the timing for the multiply instruction, yibobtice that the xeecution time
for this instruction is often Ior’rgWhen multiplying by a constant, you can sometimeasicathe perfor
mance penalty of thelUL, IMUL, and INTMUL instructions by using shifts, additions, and subtractions to
perform the multiplication.

Remembera SHL instruction computes the same result as multiplying the spe@ferand by ta
Shifting to the left tw bit positions multiplies the operand by fo8hifting to the left three bit positions
multiplies the operand by eight. In general, shifting an operand to the left n bits multiplies"itAy 2
value can be multiplied by some constant using a series of shifts and adds or shifts and subti@ctions. F
example, to multiply theéX register by ten, you need only multiply it by eight and then add antitwes the
original value.That is,10*AX = 8*AX + 2*AX. The code to accomplish this is

shl (1, ax); /1 Multiply AX by two.

nov(ax, bx); I/l Save 2*AX for later.

shl(2, ax); /1 Miltiply ax by eight (*4 really, but it contains *2).
add(bx, ax); /1 Add in AX*2 to AX*8 to get AX*10.

TheAX register (or just about grregister for that matter) can often be multiplied by ma&onstant &l-
ues muchdster usingHL than by using th&UL instruction.This may seem hard to balesince it only
takes one instruction to compute this product:

1. Actually, this is specific to a given processor. Some processors execute the INTMUL instruction fairly fast.

Page606 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic
intmul (10, ax);

However, if you look at the timings, the shift and add example above requires fewer clock cycles on many
processors in the 80x86 family than MBL instruction. Of course, the code is sovhat larger (by a few

bytes), but the performance improvement is usually worth it. Of course, on the later 80x86 processors, the
multiply instructions are quite a biagter than the earlier processors, but the shift and add scheme is often
faster on these processors as well.

You can also use subtraction with shifts to perform a multiplication operation. Consider the following
multiplication by seven:

nov(eax, ebx); // Save EAX * 1
shl (3, eax); /Il EAX = EAX * 8
sub(ebx, eax); Il EAX*8 - EAX*1 is EAX*7

This follows directly from the fact that&X*7 = (EAX*8)-EAX.

A common error made by gimning assembly language students is subtracting or adding one or tw
rather than EAXL or EAX*2. The folloving doesnot compute ex*7:

shl (3, eax);

sub(1, eax);
It computeg8*EAX)-1, something entirely diérent (unless, of courseAX = 1). Bavare of this pitfall when
using shifts, additions, and subtractions to perform multiplication operations.

You can also use the LEA instruction to compute certain products. The trick is to use the scaled index
addressing modes. The following examples demonstrate some simple cases:

lea(eax, [ecx][ecx]); /] EAX := ECX * 2
| ea(eax, [eax]eax*2]); /] EAX := EAX * 3
lea(eax, [eax*4]); /] EAX := EAX * 4
| ea(eax, [ebx][ebx*4]); /I EAX := EBX * 5
lea(eax, [eax*8]); // EAX := EAX * 8
| ea(eax, [edx][edx*8]); /] EAX := EDX * 9

10.5.2 Division Without DIV or IDIV

Much as theSHL instruction can be used for simulating a multiplication by soneepaof two, you
may use th&HR andSAR instructions to simulate awdsion by a pwer of two. Unfortunatelyyou cannot
use shifts, additions, and subtractions to perfornvigidn by an arbitrary constant as easily as you can use
these instructions to perform a multiplication operation.

Another vay to perform diision is to use the multiply instructionéou can diide by some &lue by
multiplying by its reciprocal. Since the multiply instructionaster than the dide instruction; multiplying
by a reciprocal is usuallyater than dision.

Now you're probably wndering “hev does one multiply by a reciprocal when tladues we'e dealing
with are all intgers?"The answerof course, is that we must cheat to do this. If yaatvio multiply by one
tenth, there is no ay you can load theawe 1/18"into an 80x86 rgister prior to performing the multiplica
tion. However, we could multiply 1/18 by 10, perform the multiplication, and thewide the result by ten
to get the fial result. Of course, thisomldn't buy you athing at all, in &ct it would male things verse
since you'e nav doing a multiplication by ten as well as aigion by ten. Haever, suppose you multiply
1/10th by 65,536 (6553), perform the multiplication, and theideiby 65,536This would still perform the
correct operation and, as it turns out, if you set up the problem cargemilgan get the dision operation
for free. Consider the follWsing code that didesAX by ten:

nov(6554, dx); /1 6554 = round(65, 536/10).
mul (dx, ax);

This code legaes AX/10 in theDX register.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page607

Chapter Ten Volume Three

To understand o this works, consider what happens when you multiptyby 65,536 ($10000)his
simply mosesAX into DX and setaX to zero (a multiply by $10000 is egalent to a shift left by sixteen
bits). Multiplying by 6,554 (65,536 dided by ten) putaX divided by ten into th&X register SinceMUL is
faster thamblV , this technique runs a littl@gter than using a straighvidion.

Multiplying by the reciprocal wrks well when you need touiile by a constanYou could &en use it
to divide by a ariable, lnt the werhead to compute the reciprocal only paysfgfou perform the diision
mary, mary times (by the samealue).

10.5.3 Implementing Modulo-N Counters with AND

If you want to implement a counteaniable that counts up td2 and then resets to zero, simply using
the following code:

inc(CounterVar);
and(nBits, CounterVar);

wherenBits is a binary alue containing n one bits right justified in the number. For example, to create a
counter that cycles between zero and fifteen, you could use the following:

inc(CounterVar);
and(990001111, CounterVar);

10.5.4 Careless Use of Machine Idioms

One problem with using machine idioms is that the machines chaprg¢irne. The DOS/16-bit gr
sion of this t&t recommends the use ofveeal machine idioms in addition to those this chapter presents.
Unfortunately as time passed Intel impexd the processor and tricks that used twigeoa performance
beneft are actually shwer on the neer processorsTherefore, you should be careful about emiplg cont
mon “tricks” you pick up; thgmay not actually impnee the code.

10.6 The HLA (Pseudo) Random Number Unit

The HLA rand.hhf module puides a set of pseudo-random generators that returns seemingly random
values on each callThese pseudo-random number generator functions are great for waitas gnd other
simulations that require a sequence alues that the user can not easily guelsese functions return a
32-bit value in the EAX rgister You can treat the result as a signed or unsiga&ee\as appropriate for
your application.

The rand.hhf library module includes the faliag functions:
procedure rand. random returns(“eax”);
procedure rand.range(startRange: dword; endRange:dword); returns(“eax”);

procedure rand. uniform returns(“eax”);
procedure rand. urange(startRange: dword; endRange:dword); returns(“eax”);

procedure rand. randoni ze;

Therand. random andr and. uniform procedures are both functions that return a 32-bit pseudo-random
number in the EAX mgister They differ only in the algorithm theuse to compute the random number
sequencerénd.random uses a standard linear congruential genenatiod.uniform uses an addite genera
tor. See Knutls “TheArt of Computer Programming/olumeTwo for details on these twalgorithms).

Therand.range andrand.urange functions return a pseudo-random number thbg between tw val-
ues passed as parameters (ingkjsi These routines use better algorithms than the typical “mod the result

Page608 © 2001, By Randall Hyde Beta Draft - Do not distribute

Integer Arithmetic

by the range ofalues and add the startinglwe” algorithm that nae users often empfao limit random
numbers to a spedifirange (that nee algorithm generally produces a stream of numbers that isv@ne
less than random).

By default, the random number generators in the HLA Standard Library generate the same sequence of
numbers eery time you run a progranmWhile this may not seem random at all (and statisticalbertainly
is not random), this is generally what yoarwin a random number generatdhe numbers should appear
to be random it you usually need to be able to generate the same sequenend oer agin when test
ing your program.After all, a defect you encounter with one random sequence may not be apparent when
using a diferent random number sequence. By emitting the same sequemand wer aguin, your pre
grams become deterministic so you can properly test them acvesal sans of the program.

Once your program is tested and operational, you might wour random number generator to gener
ate a diferent sequencevery time you run the program.oFexample, if you write a gme and thatane
uses a pseudo-random sequence to control the action, the end user may detect a pattern andrpky the g
accordingly if the random number generatevagls returns the same sequence of numbers.

To alleviate this problem, the HLA Standard Library rand module/igdes therand.randomize proce
dure. This procedure reads the current date and time (in milliseconds) and, on processors that support it,
reads the CPW’timestamp counter to generate an almost random set of bits as the starting random number
generator &lue. Calling theand.randomize procedure at the hening of your program essentially guaran
tees that dferent executions of the program will produce aféeient sequence of random numbers.

Note that you cannot makhe sequence “more random” by callmagd.randomize multiple times. In
fact, sinceand.randomize generates a meseed based on the date and time, catkng.randomize multiple
times in your program will actually generate a less random sequence (since timeeisinareasing alue,
not a randomadue). So madkat most one call t@nd.randomize and le&e it up to the random number gen
erators to ta& it from there.

Note thatrand.randomize will randomize both theand.random andrand.uniform random number gen
erators.You do not need separate calls for the tlifferent generators nor can you randomize one without
randomizing the other

One attrilute of a random number generator iswhaniform are the results the generator retlris.
uniform random number generazccbhat produces a 32-bit result returns a sequencaluwéy that arevenly
distributed throughout the 32-bit range @lwes. That is, ag return result is as equally &k/ as ag other
return result. Good random number generatorstdend to binch numbers up in groups.

The folloving program code prides a simple test of the random number generators by plotting aster
isks at random positions on the scre&his program wrks by choosing taerandom numbers, one between
zero and 79, the other between zero andT2&n the program uses tbensole.puts function to print a sin
gle asterisk at the (X,Y) coordinate on the screen spddiy these tew random numbers (therefore, this
code runs only undeénindows). After 10,000 iterations of this process the program stops and lets you
obsere the result.Note: since random number generators generate random numbers, you shoxrbobt e
this program to fi the entire screen with asterisks in only 10,000 iterations.

program t est Random
#incl ude("stdlib.hhf");

begi n t est Random
consol e. cl s();
nov(10_000, ecx);

r epeat

// Cenerate a random X-coordi nat e

2. Despite their names, batind.uniform andrand.random generate a uniformly distributed set of pseudo-random numbers.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page609

Chapter Ten Volume Three
/1 using rand.range.

rand. range(0, 79);
nmov(eax, ebx); /1 Save the X-coordinate for now.

// Cenerate a random Y-coordi nate
/1 using rand. urange.

rand. urange(0, 23);

/1 Print an asterisk at
/'l the specified coordinate on the screen.

consol e. puts(ax, bx, "*");

/1 Repeat this 10,000 times to get
/1 a good distribution of val ues.

dec(ecx);
until (@);

/] Position the cursor at the bottom of the
/] screen so we can observe the results.

consol e. gotoxy(24, 0);

end t est Random

Program 10.1 Screen Plot Test of the HLA Random Number Generators

The rand.hhf module also piides aniterator that generates a random sequenceabfevin the range
0..n-1. Havever, a discussion of this function musaitvuntil we cwer iterators in a later chapter

10.7 Putting It All Together

This chapter fiished the presentation of the gee arithmetic instructions on the 80x8Bhen it dem
onstrated hw to corvert expressions from a highwvel language syntax into assembly languabieis chap
ter concluded by teaching you avfassembly language tricks you will commonlydfin programs. By the
conclusion of this chapter you are (hopefully) in a position where you can eadilgte arithmeticxpres
sions in your assembly language programs.

Page610 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Integer Arithmetic Chapter Ten
	10.1 Chapter Overview
	10.2 80x86 Integer Arithmetic Instructions
	10.2.1 The MUL and IMUL Instructions
	10.2.2 The DIV and IDIV Instructions
	10.2.3 The CMP Instruction
	10.2.4 The SETcc Instructions
	10.2.5 The TEST Instruction

	10.3 Arithmetic Expressions
	10.3.1 Simple Assignments
	10.3.2 Simple Expressions
	10.3.3 Complex Expressions
	10.3.4 Commutative Operators

	10.4 Logical (Boolean) Expressions
	10.5 Machine and Arithmetic Idioms
	10.5.1 Multiplying without MUL, IMUL, or INTMUL
	10.5.2 Division Without DIV or IDIV
	10.5.3 Implementing Modulo-N Counters with AND
	10.5.4 Careless Use of Machine Idioms

	10.6 The HLA (Pseudo) Random Number Unit
	10.7 Putting It All Together

