

Hello, World of Assembly Language

s right

some

of

ay

ould
 “Zip
inZip
TAR
products
page for
e them

nder
, but
 you
issions
sure how

dow
ows
miliar

om a
 as the
 know
r before
 basic

l win-
nces
” shell.
u have
entation
Hello, World of Assembly Language Chapter Two

2.1 Chapter Overview

This chapter is a “quick-start” chapter that lets you start writing basic assembly language program
away. This chapter presents the basic syntax of an HLA (High Level Assembly) program, introduces you to
the Intel CPU architecture, provides a handful of data declarations and machine instructions, describes
utility routines you can call in the HLA Standard Library, and then shows you how to write some simple
assembly language programs. By the conclusion of this chapter, you should understand the basic syntax
an HLA program and be prepared to start learning new language features in subsequent chapters.

2.2 Installing the HLA Distribution Package

Before you can learn assembly language programming using HLA, you must first successfully install
HLA on your system. Currently, HLA is available for the Linux and Windows operating systems. This sec-
tion explains how to install HLA on these two systems. If HLA is already running on your system, you m
skip to the next major section in this chapter.

The latest version of HLA is available from the Webster web server at

http://webster.cs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you sh
select the latest version of HLA for download to your computer. The HLA distribution is provided in a
File” compressed format. Under Windows, you will need a decompressor program like PKUNZIP or W
in order to extract the HLA files from this zipped archive file; under Linux, you will use the GZIP and
programs to decompress and extract HLA. A detailed description of the use of these decompression
is beyond the scope of this manual, please consult the software vendor’s documentation or their web
information concerning the use of these products; this discussion will only briefly describe how to us
to extract important HLA files.

This text assumes that you will unzip the HLA distribution into the root directory of your C: drive u
Windows, or to the “/usr/hla” directory under Linux. You can certainly install HLA anywhere you want
you will have to adjust the following descriptions if you install HLA somewhere else. If possible,
should install HLA using root/administrator priviledges; regardless, you should make sure the perm
are set properly on the files so everyone has read and execute access to the HLA files; if you are un
to do this, please consult your operating system’s documentation or consult a system administrator.

HLA is a console application. In order to run the HLA compiler you must run the command win
program (this is “command.com” on Windows 95 and 98, or “cmd.exe” on Windows NT and Wind
2000; Linux users typically run “bash” or some other shell). This also means that you should be fa
with some simple “command line interface” (CLI) or “shell” commands.

Most Windows distributions let you run the command prompt windows from the Start menu or fr
submenu hanging off the start menu (you may also select “RUN” from the Start menu and type “cmd”
program name). This text assumes that you are familiar with the Windows command window and you
how to use some basic command window commands (e.g., dir, del, rename, etc.). If you have neve
used the Windows command line interpreter, you should consult an appropriate text to learn a few
commands.

Most Linux distributions run “bash” or some other shell program whenever you open up a termina
dow (e.g., a GNOME or KDE terminal window or an X-TERM window). There are some minor differe
between the shells running under Linux, this document assumes that you are using GNU’s “bash
Again, this text assumes that you are comfortable with a few commands like ls, rm, and mv. If yo
never used a Unix shell program before, you should consult an appropriate text or the on-line docum
to learn a few basic commands.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 11

Chapter Two

Volume 1

e

A

,

d

n

n
,

t
ed

If
 to

his
Before you can actually run the HLA compiler, you must set the system execution path and set up vari-
ous environment variables. The following subsections explain how to do this under Windows and then
Linux.

2.2.1 Installation Under Windows

HLA is not a stand alone program. It is a compiler that translates HLA source code into a lower-level
assembly language. A separate assembler, such as MASM, then completes the processing of this low-level
intermediate code to produce an object code file. Finally, you must link the object code output from th
assembler using a linker program. Typically you will link the object code produced by one or more HL
source files with the HLA Standard Library (hlalib.lib) and, possibly, several operating system specific
library files (e.g., kernel32.lib under Windows). Most of this activity takes place transparently whenever you
ask HLA to compile your HLA source file(s). However, for the whole process to run smoothly, you must
have installed HLA and all the support files correctly. This section will discuss how to set up HLA on your
Windows system.

First, you will need an HLA distribution for Windows. The latest version of HLA is always available
on Webster at http://webster.cs.ucr.edu. You should go there and download the latest version if you do not
already possess it.

As noted earlier, HLA is not a stand alone assembler. The HLA package contains the HLA compiler,
the HLA Standard Library, and a set of include files for the HLA Standard Library. If you write an HLA
program with just this code, HLA will produce an "ASM" file and then stop. To produce an executable file
you will need Microsoft’s MASM and LINK programs, along with some Windows library files, to complete
the process. The easiest way to get all the files you need is to download the "MASM32" package from
http://www.pdq.com.au/home/hutch/masm.htm or any of the other places on the net where you can find the
MASM32 package (Webster maintains a current link if this link is dead). Once you unzip this file, it’s easy
to install the MASM32 package using the install program it supplies. You must install MASM32 (or
MASM/LINK/Win32 library files) before HLA will function properly.

Here are the steps I went through to install MASM32 on my system:

• I downloaded masm32v6.zip from the URL above (later versions are probably okay too
although there is a slight chance that the installation will be different.

• I double-clicked on the masm32v6.zip file (which runs WinZip on my system).
• I choose to extract "install.exe". I told WinZip to extract this file to C:\.
• I double-clicked on the "install.exe" icon and selected the "C:" drive in the window that poppe

up. Then I hit the install button and waited while MASM32 extracted all the pertinent files.
This produced a directory called "MASM32". MASM32 is a powerful assembly language
development subsystem in its own right; but it uses the traditional MASM syntax rather tha
the HLA syntax. So we’ll use MASM32 mainly for the assembler, linker, and library files.
MASM32 also includes a simple editor/IDE and several other tools that may be useful to a
HLA programmer. Feel free to check this software out and see if it is useful to you. For now
note that the executable files you will ultimately need are ML.EXE, ML.ERR, LINK.EXE, and
a couple of DLLs. You can find them in the MASM32\BIN subdirectory. Leave them there for
the time being. The MASM32\LIB directory also contains many Win32 library files you will
need. Again, leave them alone for the time being.

• Next, if you haven’t already done so, download the HLA executables file from Webster a
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associat
with HLA from the HLA download page. The "Executables" is the only one you’ll absolutely
need; however, you’ll probably want to grab the documentation and examples files as well.
you’re curious, or you want some more example code, you can download the source listings
the HLA Standard Library. If you’re really curious (or masochistic), you can download the
HLA compiler source listings to (this is not for casual browsing!).

• I downloaded the HLA1_32.zip file while writing this. Most likely, there is a much later ver-
sion available as you’re reading this. Be sure to get the latest version. I chose to download t
file to my "C:\" root directory.
Page 12 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

d
le

ide
r
r,

w

w

• After downloading HLA1_32.zip to my C: drive, I double-clicked on the icon to run WinZip. I
selected "Extract" and told WinZip to extract all the files to my C:\ directory. This created an
"HLA" subdirectory in my root on C: with two subdirectories (include and lib) and two EXE
files (HLA.EXE and HLAPARSE.EXE. The HLA program is a "shell" program that runs the
HLA compiler (HLAPARSE.EXE), MASM (ML.EXE), the linker (LINK.EXE), and other
programs. You can think of HLA.EXE as the "HLA Compiler".

• Next, I created the following text file and named it "IHLA.BAT" (note that you may need to
change the default drive letters if you want to install HLA on a drive other than "C:"):

path=c:\hla;c:\masm32\bin;%path%
set lib=c:\masm32\lib;c:\hla\hlalib;%lib%
set include=c:\hla\include;c:\masm32\include;%include%
set hlainc=c:\hla\include
set hlalib=c:\hla\hlalib\hlalib.lib

• Be sure you’ve typed all the lines exactly as written or HLA will fail to run properly. You may
use any reasonable TEXT editor (e.g., NOTEPAD.EXE) to create this file. Do not use a wor
processing program (since they generally don’t save their data as a TEXT file). Be sure the fi
is named "IHLA.BAT" and not "IHLA.BAT.TXT" or some other variation.

• This batch file tells the system where to find all the files you will need when running HLA.
Advanced Win32 users should note that you can set all these environment variables up ins
the Windows system control panel in the "Advanced->Environment Variables" area. This is fa
more convenient (ultimately) than using this batch file (for reasons you’ll soon see). Howeve
you can mess up you system if you don’t know what you’re doing when playing with the sys-
tem control panel, so only advanced users who’ve done this stuff before should attempt this.

• HLA is a Win32 Console Window program. To run HLA you must open up a console Win-
dow. Under Windows 2000, Microsoft has hidden this away in Start->Programs->Accesso-
ries->Command Prompt. You might find it in another location. You can also start the
command prompt processor by selecting Start->Run and entering "cmd".

• Once you’ve got the command prompt, ("C:>" or something similar), execute the IHLA.BAT
file you’ve created by typing "IHLA" at the command line prompt. Hit the ENTER key to exe-
cute the command.

• At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back and fig-
ure out what you’ve done wrong up to this point (it doesn’t hurt to start over from the begin-
ning if you’re lost).

• Thus far, you’ve verified that HLA.EXE is operational. Now try the following command:
"ML /?" This should run the Microsoft Macro Assembler (MASM) and display the help
screen. You can ignore the information that appears; you will probably never need to kno
this stuff.

• Next, let’s verify the correct operation of the linker. Type "link /?" and verify that the linker
program runs. Again, you can ignore the help screen that appears. You don’t need to kno
about this stuff.

• Now it’s time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA (we
will revisit this program a little later in this chapter, don’t worry about what it means just yet).
Enter it into a text editor and save it using the filename "HW.HLA":

program HelloWorld;
#include("stdlib.hhf")
begin HelloWorld;

stdout.put("Hello, World of Assembly Language", nl);

end HelloWorld;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 13

Chapter Two Volume 1

ys

e

b, then
les
e're

exam
, and
 path
at will
• Make sure you’re in the same directory containing the HW.HLA file and type the following
command at the "C:>" prompt: "HLA -v HW". The "-v" option tells HLA to produce VER-
BOSE output during compilation. This is helpful for determining what went wrong if the sys-
tem fails somewhere along the line. This command should produce the following output:

HLA (High Level Assembler)
Written by Randall Hyde and released to the public domain.
Version Version 1.32 build 4904 (prototype)

Files:
1: hw.hla

Compiling "hw.hla" to "hw.asm"

Assembling hw.asm via "ml /c /coff /Cp hw.asm"

Microsoft (R) Macro Assembler Version 6.14.8444
Copyright (C) Microsoft Corp 1981-1997. All rights reserved.

 Assembling: hw.asm
Linking via "link -subsystem:console /heap:0x1000000,0x1000000
/stack:0x1000000,0x1000000 /BASE:0x3000000 /machine:IX86 -entry:?HLAMain @hw.link
-out:hw.exe kernel32.lib user32.lib c:\hla\hlalib\hlalib.lib hw.obj"
Microsoft (R) Incremental Linker Version 5.12.8078
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

/section:.text,ER
/section:readonly,R
/section:.edata,R
/section:.data,RW
/section:.bss,RW

• If you get all of this output, you’re in business. You can run the “HW” program using the fol-
lowing CLI (command line interpreter) command:

HW

• One thing to remember is that unless you set the environment variables permanently in the S-
tem control panel, you will have to run the IHLA.BAT file every time you open up a new com-
mand prompt window. Since this is a pain, here are some instructions I’ve taken from th
Internet that describe how to set up the environment variables (DO THIS AT YOUR OWN
RISK!)

1) Open System Properties (Winkey-Break is a convenient shortcut) and go to Advanced ta
Environment Variables. Add "c:\hla" to the Path in SYSTEM VARIABLES, not in "User variab
for <your win2k login name>". Click OK, but keep the Environment Variables window open, w
not done.

2) Look at the contents of ihla.bat (ABOVE):

3) In "User Variables for <your login name>", you must end up with each of these settings. For -
ple, to create hlainc, you click the "New..." button, type "hlainc" as the name of the variable
type "c:\hla\include" as the Variable value (all without quotes of course). If there is already a
set, and it already has some value, add this immediately to the end: ";c:\hla;%path%" and th
preserve your existing User and System paths as well as adding c:\hla.
Page 14 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

y said

1\U

age"!

use I
col-
le legal

 on
ogress-
d Gas
f you
s well.

rary
 the
ified by
ules,

 instal-
 of the
des

t has
kers.
ed" or
 linker.
 in the

e
A

For example, suppose you opened up your User Variables for <login name> and it alread
"C:\Private

Files\PantiePix;c:\winnt\system32;c:\winnt;c:\winnt\System32\Wbem;d:\lcc\bin;D:\PROGRA~
LTRAE~1;D:\4NT300;C:\msoffice\Office;c:/hla",

you would click on Edit and type "C:\Private Files\PantiePix;c:\hla;%path%"

(Same advice for preserving existing lib and include settings)

4) Once you reboot the computer, you should be all set for "Hello world of assembly langu
(without having to run the IHLA.BAT file.)

Installing HLA is a complex and slightly involved process. Unfortunately, this is necessary beca
don’t have the rights to distribute MASM, LINK, and other Microsoft files. Fortunately, HUTCH has
lected all of these files together so they are easy to download. If you are concerned about possib
issues with the download, you may legally download MASM and LINK from Microsoft’s site. A link
Webster (at the URL above) describes how to do this. At the time this was being written, work was pr
ing on HLA to produce TASM compatible output and plans were in the works to produce NASM an
versions as well. However, you will still have to obtain the Microsoft library files from some source i
intend to produce a Win32 application. Versions of HLA may appear for other Operating Systems a
Check out Webster to see if any progress has been made in this direction.

The most common two problems people have running HLA involve the location of the Win32 lib
files and the choice of linker. During the linking phase, HLA (well, link.exe actually) requires
kernel32.lib, user32.lib, and gdi32.lib library files. These must be present in the pathname(s) spec
the LIB environment variable. If, during the linker phase, HLA complains about missing object mod
make sure that the LIB path specifies the directory containing these files. If you’re a MS VC++ user,
lation of VC++ should have set up the LIB path for you. If not, then locate these files (they are part
MASM32 distribution) and copy them to the HLA\HLALIB directory (note that the ihla.bat file inclu
c:\hla\hlalib as part of the LIB path).

Another common problem with running HLA is the use of the wrong link.exe program. Microsof
distributed several different versions of link.exe; in particular, there are 16-bit linkers and 32-bit lin
You must use a 32-bit segmented linker with HLA. If you get complaints about "stack size exceed
other errors during the linker phase, this is a good indication that you’re using a 16-bit version of the
Obtain and use a 32-bit version and things will work. Don’t forget that the 32-bit linker must appear
execution path (specified by the PATH environment variable) before the 16-bit linker.

2.2.2 Installation Under Linux

HLA is not a stand alone program. It is a compiler that translates HLA source code into a lower-level
assembly language. A separate assembler, such as Gas (as), then completes the processing of this low-level
intermediate code to produce an object code file. Finally, you must link the object code output from th
assembler using a linker program. Typically you will link the object code produced by one or more HL
source files with the HLA Standard Library (hlalib.a). Most of this activity takes place transparently when-
ever you ask HLA to compile your HLA source file(s). However, for the whole process to run smoothly, you
must have installed HLA and all the support files correctly. This section will discuss how to set up HLA on
your system.

First, you will need an HLA distribution for Linux. The latest version of HLA is always available on
Webster at http://webster.cs.ucr.edu. You should go there and download the latest version if you do not
already possess it.

As noted earlier, HLA is not a stand alone assembler. The HLA package contains the HLA compiler,
the HLA Standard Library, and a set of include files for the HLA Standard Library. If you write an HLA
program with just this code, HLA will produce an "ASM" file and then stop. To produce an executable file
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 15

Chapter Two Volume 1

e
e

t
ed

s
ce

ad

u

s

r

ute
ead

in

n,

.

g
you will need GNU’s as and ld programs (these come with any Linux distribution that supports compiling
C/C++ programs). Note that HLA only works with Gas v2.10 or later. The Gas assembler is part of th
Binutils package. If you don’t have version 2.10 or later, download an appropriate binutils package from th
internet. HLA will generate errors when it attempts to assemble its output via an invocation of the as (Gas)
executable if you don’t have Gas v2.10 or later installed in your system.

Here are the steps I went through to install HLA on my Linux system:

• First, if you haven’t already done so, download the HLA executables file from Webster a
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associat
with HLA from the HLA download page. The "Linux Executables" is the only one you’ll
absolutely need; however, you’ll probably want to grab the documentation and examples file
as well. If you’re curious, or you want some more example code, you can download the sour
listings to the HLA Standard Library. If you’re really curious (or masochistic), you can down-
load the HLA compiler source listings to (this is not for casual browsing!).

• I downloaded the HLA1_39.tar.gz file while writing this. Most likely, there is a much later
version available as you’re reading this. Be sure to get the latest version. I chose to downlo
this file to my root directory; you can put the file whereever you like, though this documenta-
tion assumes that all HLA files wind up in the "/usr/hla/..." directory tree. If you do not already
have a “/usr/hla” subdirectory, you can create one with the “mkdir” command (it’s best to do
this using the “root” or “superuser” account; if you do not have superuser priviledges, yo
should have your system administrator do this for you.

• After downloading HLA1_39.tar.gz to my root directory, I executed the following shell com-
mand: "gzip -d HLA1_39.tar.gz". Once decompression was complete, I extracted the individ-
ual files using the command "tar xvf HLA1_39.tar". This extracted a couple of executable file
("hla" and "hlaparse") along with two subdirectories (include and hlalib). The HLA program
is a "shell" program that runs the HLA compiler (hlaparse), Gas (as), the linker (ld), and othe
programs. You can think of “hla” as the "HLA Compiler". It would be a real good idea, at this
point, to set the permissions on "hla" and "hlaparse" so that everyone can read and exec
them. You should also set read and execute permissions on the two subdirectories and r
permissions on all the files within the directories (if this isn’t the default state). Do a "man
chmod" from the Linux command-line if you don’t know how to change permissions.

• Next, (logged in as a plain user rather than root or the super-user), I edited the ".bashrc" file
my home directory ("/home/rhyde" in my particular case, this will probably be different for
you). I found the line that defined the "path" variable, it originally looked like this on my sys-
tem

"PATH=$DBROOT/bin:$DBROOT/pgm:$PATH"
I edited this line to add the path to the HLA directory, producing the following:

 "PATH=$DBROOT/bin:$DBROOT/pgm:/usr/hla:$PATH”
Without this modification, Linux will probably not find HLA when you attempt to execute it
unless you type a full path (e.g., "/usr/hla/hla") when running the program. Since this is a pai
you’ll definitely want to add "/usr/hla" to your path.

• Next, I added the following four lines to ".bashrc" (note that Linux filenames beginning with a
period don’t normally show up in directory listings unless you supply the "-a" option to ls):

hlalib=/usr/hla/hlalib/hlalib.a
export hlalib
hlainc=/usr/hla/include
export hlainc

These four lines define (and export) environment variables that HLA needs during compilation
Without these environment variables, HLA will probably complain about not being able to find
include files, or the linker (ld) will complain about strange undefined symbols when you
attempt to compile your programs.

After saving the ".bashrc" shell, you can tell Linux to make the changes to the system by usin
the command:

source .bashrc
Page 16 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

t

u

ll

)

Note: this discussion only applies to users who run the BASH shell. If you are using a differen
shell (like the C-Shell or the Korn Shell), then the directions for setting the path and environ-
ment variables differs slightly. Please see the documentation for your particular shell if yo
don’t know how to do this. Also note that Linux does not normally display files whose name
begins with a period when you use the “ls” command; to see such files, use the “ls -a” she
command.

• At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back and fig-
ure out what you’ve done wrong up to this point (it doesn’t hurt to start over from the begin-
ning if you’re lost).

• Now it’s time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA
(we’ll discuss this program in detail a little later in this chapter). Enter it into a text editor and
save it using the filename "hw.hla":

program HelloWorld;
#include("stdlib.hhf")
begin HelloWorld;

stdout.put("Hello, World of Assembly Language", nl);

end HelloWorld;

• Make sure you’re in the same directory containing the "hw.hla" file and type the following
command at the prompt: "hla -v hw". The "-v" option tells HLA to produce VERBOSE output
during compilation. This is helpful for determining what went wrong if the system fails some-
where along the line. This command should produce the following output:

HLA (High Level Assembler) Parser
Written by Randall Hyde and released to the public domain.
Version Version 1.39 build 6845 (prototype)
-t active
File: t.hla

Compiling "t.hla" to "t.asm"
HLA (High Level Assembler)
Copyright 1999, by Randall Hyde, all rights reserved.
Version Version 1.39 build 6845 (prototype)
ELF output
Using GAS assembler
GAS output
-test active

Files:
1: t.hla

Compiling 't.hla' to 't.asm'
using command line [hlaparse -v -sg -test "t.hla"]

Assembling "t.asm" via [as -o t.o "t.asm"]
Linking via [ld -o "t" "t.o" "/usr/hla/hlalib/hlalib.a"]

Installing HLA is a complex and slightly involved process; though take heart, it’s a lot simpler to install
HLA under Linux than Windows! (See the previous section if you need proof.) Versions of HLA may
appear for other operating systems (beyond Windows and Linux) as well. Check out Webster to see if any
progress has been made in this direction. Note a very unique thing about HLA: Carefully written (console
applications will compile and run on all supported operating systems without change. This is unheard of for
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 17

Chapter Two Volume 1

r

++

uage;

ecifi
assembly language! So if you are using multiple operating systems supported by HLA, you’ll probably
want to download files for all supported OSes.

Note: to run the HelloWorld program, a Linux user would type “hw” (or possibly “./hw”) at the com-
mand line prompt.

2.2.3 Installing “Art of Assembly” Related Files

Although HLA is relatively flexible about where you put it on your system, this text assumes you’ve
installed HLA in the “hla” directory on your C: drive under a Win32 operating system or in “/usr/hla” unde
Linux. This text also assumes the standard directory placement for the HLA files, which has the following
layout

• HLA directory
• AoA directory
• Doc directory
• Examples directory
• hlalib directory
• hlalibsrc directory
• include directory
• Tests directory

The “Art of Assembly” (AoA) software distribution has the following directory tree structure:

• AoA directory
• volume1
• ch01 directory
• ch02 directory
• etc.
• volume2
• ch01 directory
• ch02 directory
• etc.
• etc.

The main HLA directory contains the executable code for the compiler. This consists of two files,
HLA.EXE/hla and HLAPARSE.EXE/hlaparse (Windows/Linux). These two programs must be in the cur-
rent execution path in order to run the compiler. Under Windows, it wouldn’t hurt to put the ml.exe, ml.err,
link.exe, mspdbX0.dll (x=5, 6, or greater), and msvcrt.dll files in this directory as well. Under Linux, the
“as” and “ld” programs are already in the execution path, assuming your Linux system supports C/C
development.

The Doc directory contains reference material for HLA in PDF and HTML formats. If you have a copy
of Adobe Acrobat Reader, you will probably want to read the PDF versions since they are much nicer than
the HTML versions. These documents contain the most up-to-date information about the HLA lang
you should consult them if you have a question about the HLA language or the HLA Standard Library. Gen-
erally, material in this documentation supersedes information appearing in this text since the HLA document
is electronic and is probably more up to date.

The Examples directory contains a large set of HLA programs that demonstrate various features in the
HLA language. If you have a question about an HLA feature, you can probably find an example program
that demonstrates that feature in the Examples directory. Such examples provide invaluable insight that is
often superior to a written description of the feature. Note that some of these programs may be spc to
Windows or Linux, not all will compile and run under either operating system.
Page 18 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

A

e
ory

in

,

r

den
The hlalib directory contains the object code for the HLA Standard Library. As you become more com-
petent with HLA, you may want to take a look at how HLA implements various library functions by check-
ing out the library source code in the hlalibsrc subdirectory.

The include directory contains the HLA Standard Library include files. These special files (that end with
a “.hhf” suffix, for “HLA Header File”) are needed during assembly to provide prototype and other informa-
tion to your program. The example programs in this chapter all include the HLA header file “stdlib.hhf” that,
in turn, includes all the other HLA header files in the standard library.

The Tests directory contains various test files that test the correct operation of the HLA system. HL
includes these files as part of the distribution package because they provide additional examples of HLA
coding.

The AoA directory contains the code specific to this textbook. This directory contains all the source cod
to the (complete) programs appearing in this text. It also contains the programs appearing in the Laborat
Exercises section of each chapter. Therefore, this directory is very important to you. Within this subdirec-
tory, the information is further divided up by volume and chapter. The material for Chapter One appears
the “ch01” subdirectory of the “volume1” directory in the AoA directory tree, the material for Chapter Two
appears in the “ch02” subdirectory of the “volume1” directory, etc..

2.3 The Anatomy of an HLA Program

An HLA program typically takes the following form:

Figure 2.1 Basic HLA Program Layout

The pgmID in the template above is a user-defined program identifier. You must pick an appropriate
descriptive, name for your program. In particular, pgmID would be a horrible choice for any real program. If
you are writing programs as part of a course assignment, your instructor will probably give you the name to
use for your main program. If you are writing your own HLA program, you will have to choose this name.

Identifiers in HLA are very similar to identifiers in most high level languages. HLA identifiers may
begin with an underscore or an alphabetic character, and may be followed by zero or more alphanumeric o
underscore characters. HLA’s identifiers are case neutral. This means that the identifiers are case sensitive
insofar as you must always spell an identifier exactly the same way in your program (even with respect to
upper and lower case). However, unlike other case sensitive languages, like C/C++, you may not declare two
identifiers in the program whose name differs only by the case of alphabetic characters appearing in an i-
tifier. Case neutrality enforces the good programming style of always spelling your names exactly the same

program pgmID ;

Declarations

begin pgmID ;

Statements

end pgmID ;

These identifiers
specify the name
of the program.
They must all be
the same identifier.

The declarations section
is where you declare constants,
types, variables, procedures, and
other objects in an HLA program.

The Statements section is where
you place the executable statements
for your main program.

PROGRAM, BEGIN, and END are HLA reserved words that delineate the program. Note the
placement of the semicolons in this program.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 19

Chapter Two Volume 1

e
a

m the

ill

ust

ake that
way (with respect to case) and never declaring two identifiers whose only difference is the case of certain
alphabetic characters.

A traditional first program people write, popularized by K&R’s “The C Programming Language” is th
“Hello World” program. This program makes an excellent concrete example for someone who is learning
new language. Here’s what the “Hello World” program looks like in HLA:

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

 stdout.put(“Hello, World of Assembly Language”, nl);

end helloWorld;

Program 2.1 The Hello World Program

The #include statement in this program tells the HLA compiler to include a set of declarations fro
stdlib.hhf (standard library, HLA Header File). Among other things, this file contains the declaration of the
stdout.put code that this program uses.

The stdout.put statement is the “print” statement for the HLA language. You use it to write data to the
standard output device (generally the console). To anyone familiar with I/O statements in a high level lan-
guage, it should be obvious that this statement prints the phrase “Hello, World of Assembly Language”. The
nl appearing at the end of this statement is a constant, also defined in “stdlib.hhf”, that corresponds to the
newline sequence.

Note that semicolons follow the program, BEGIN, stdout.put, and END statements1. Technically speak-
ing, a semicolon is not necessary after the #INCLUDE statement. It is possible to create include files that
generate an error if a semicolon follows the #INCLUDE statement, so you may want to get in the habit of
not putting a semicolon here (note, however, that the HLA standard library include files always allow a semi-
colon after the corresponding #INCLUDE statement).

The #INCLUDE is your first introduction to HLA declarations. The #INCLUDE itself isn’t actually a
declaration, but it does tell the HLA compiler to substitute the file “stdlib.hhf” in place of the #INCLUDE
directive, thus inserting several declarations at this point in your program. Most HLA programs you w
write will need to include at least some of the HLA Standard Library header files (“stdlib.hhf” actually
includes all the standard library definitions into your program; for more efficient compiles, you might want
to be more selective about which files you include. You will see how to do this in a later chapter).

Compiling this program produces a console application. Running this program in a command window
prints the specified string and then control returns back to the command line interpreter (or shell in Unix ter-
minology).

Note that HLA is a free-format language. Therefore, you may split statement across multiple lines (j
like high level languages) if this helps to make your programs more readable. For example, the stdout.put
statement in the HelloWorld program could also be written as follows:

stdout.put
(

“Hello, World of Assembly Language”,
nl

);

1. Technically, from a language design point of view, these are not all statements. However, this chapter will not m
distinction.
Page 20 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

ma

a. The
s here
 chap

s will

tax.

se
Another item worth noting, since you’ll see it cropping up in example code throughout this text, is that
HLA automatically concatenates any adjacent string constants it finds in your source file. Therefore, the
statement above is also equivalent to:

stdout.put
(

“Hello, “
“World of Assembly Language”,
nl

);

Indeed, “nl” (the newline) is really nothing more than a string constant, so (technically) the com
between the nl and the preceding string isn’t necessary. You’ll often see the above written as:

stdout.put(“Hello, World of Assembly Language” nl);

Notice the lack of a comma between the string constant and nl; this turns out to be perfectly legal in HLA,
though it only applies to certain symbol string constants; you may not, in general, drop the comm
chapter on Strings, later in this text, will explain in detail how this works. This discussion appear
because you’ll probably see this “trick” employed by sample code prior to the formal discussion in the-
ter on Strings.

2.4 Some Basic HLA Data Declarations

HLA provides a wide variety of constant, type, and data declaration statements. Later chapter
cover the declaration section in more detail but it’s important to know how to declare a few simple variables
in an HLA program.

HLA predefines three different signed integer types: int8, int16, and int32, corresponding to eight-bit
(one byte) signed integers, 16-bit (two byte) signed integers, and 32-bit (four byte) signed integers respec-
tively2. Typical variable declarations occur in the HLA static variable section. A typical set of variable dec-
larations takes the following form

Figure 2.2 Static Variable Declarations

Those who are familiar with the Pascal language should be comfortable with this declaration syn
This example demonstrates how to declare three separate integers, i8, i16, and i32. Of course, in a real pro-
gram you should use variable names that are a little more descriptive. While names like “i8” and “i32”
describe the type of the object, they do not describe it’s purpose. Variable names should describe the purpo
of the object.

In the STATIC declaration section, you can also give a variable an initial value that the operating system
will assign to the variable when it loads the program into memory. The following figure demonstrates the
syntax for this:

2. A discussion of bits and bytes will appear in the next chapter if you are unfamiliar with these terms.

static
i8: int8;
i16: int16;
i32: int32;

"static" is the keyword that begins
the variable declaration section.

int8, int16, and int32 are the names
of the data types for each declaration

i8, i16, and i32
are the names of
the variables to
declare here.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 21

Chapter Two Volume 1

nt

y

Figure 2.3 Static Variable Initialization

It is important to realize that the expression following the assignment operator (“:=”) must be a consta
expression. You cannot assign the values of other variables within a STATIC variable declaration.

Those familiar with other high level languages (especially Pascal) should note that you may onl
declare one variable per statement. That is, HLA does not allow a comma delimited list of variable names
followed by a colon and a type identifier. Each variable declaration consists of a single identifier, a colon, a
type ID, and a semicolon.

Here is a simple HLA program that demonstrates the use of variables within an HLA program:

Program DemoVars;
#include(“stdlib.hhf”);

static
 InitDemo: int32 := 5;
 NotInitialized: int32;

begin DemoVars;

 // Display the value of the pre-initialized variable:

 stdout.put(“InitDemo’s value is “, InitDemo, nl);

 // Input an integer value from the user and display that value:

 stdout.put(“Enter an integer value: “);
 stdin.get(NotInitialized);
 stdout.put(“You entered: “, NotInitialized, nl);

end DemoVars;

Program 2.2 Variable Declaration and Use

In addition to STATIC variable declarations, this example introduces three new concepts. First, the std-
out.put statement allows multiple parameters. If you specify an integer value, stdout.put will convert that
value to the string representation of that integer’s value on output. The second new feature this sample pro-
gram introduces is the stdin.get statement. This statement reads a value from the standard input device (usu-
ally the keyboard), converts the value to an integer, and stores the integer value into the NotInitialized
variable. Finally, this program also introduces the syntax for (one form of) HLA comments. The HLA com-
piler ignores all text from the “//” sequence to the end of the current line. Those familiar with C++ and Del-
phi should recognize these comments.

static
i8: int8 := 8;
i16: int16 := 1600;
i32: int32 := -320000;

The operand after the constant
assignment operator must be
a constant whose type is
compatible with the variable
you are initializing

The constant assignment
operator, ":=" tells HLA
that you wish to initialize
the specified variable with
an initial value.
Page 22 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

unt
l

nd any
boolean
D, OR,
a little

ro is
 values

es

n

nes.
2.5 Boolean Values

HLA and the HLA Standard Library provides limited support for boolean objects. You can declare
boolean variables, use boolean literal constants, use boolean variables in boolean expressions (e.g., in an IF
statement), and you can print the values of boolean variables.

Boolean literal constants consist of the two predefined identifiers true and false . Internally, HLA repre-
sents the value true using the numeric value one; HLA represents false using the value zero. Most programs
treat zero as false and anything else as true, so HLA’s representations for true and false should prove suffi-
cient.

To declare a boolean variable, you use the boolean data type. HLA uses a single byte (the least amo
of memory it can allocate) to represent boolean values. The following example demonstrates some typica
declarations:

static
BoolVar: boolean;
HasClass: boolean := false;
IsClear: boolean := true;

As you can see in this example, you may declare initialized as well as uninitialized variables.

Since boolean variables are byte objects, you can manipulate them using eight-bit registers a
instructions that operate directly on eight-bit values. Furthermore, as long as you ensure that your
variables only contain zero and one (for false and true, respectively), you can use the 80x86 AN
XOR, and NOT instructions to manipulate these boolean values (we’ll describe these instructions
later).

You can print boolean values by making a call to the stdout.put routine, e.g.,

stdout.put(BoolVar)

This routine prints the text “true” or “false” depending upon the value of the boolean parameter (ze
false, anything else is true). Note that the HLA Standard Library does not allow you to read boolean
via stdin.get.

2.6 Character Values

HLA lets you declare one-byte ASCII character objects using the char data type. You may initialize
character variables with a literal character value by surrounding the character with a pair of apostroph.
The following example demonstrates how to declare and initialize character variables in HLA:

static
c: char;
LetterA: char := ‘A’;

You can print character variables using the stdout.put routine. We’ll return to the subject of character co-
stants a little later.

2.7 An Introduction to the Intel 80x86 CPU Family

Thus far, you’ve seen a couple of HLA programs that will actually compile and run. However, all the
statements utilized to this point have been either data declarations or calls to HLA Standard Library routi
There hasn’t been any real assembly language up to this point. Before we can progress any farther and learn
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 23

Chapter Two Volume 1

tel

age pro

iscuss
ite

ht

pendent
e 16-bit
some real assembly language, a detour is necessary. For unless you understand the basic structure of the In
80x86 CPU family, the machine instructions will seem mysterious indeed.

The Intel CPU family is generally classified as a Von Neumann Architecture Machine. Von Neumann
computer systems contain three main building blocks: the central processing unit (CPU), memory, and
input/output devices (I/O). These three components are connected together using the system bus. The follow-
ing block diagram shows this relationship:

Figure 2.4 Von Neumann Computer System Block Diagram

Memory and I/O devices will be the subjects of later chapters; for now, let’s take a look inside the CPU
portion of the computer system, at least at the components that are visible to the assembly langu-
grammer.

The most prominent items within the CPU are the registers. The Intel CPU registers can be broken down
into four categories: general purpose registers, special purpose application accessible registers, segment reg-
isters, and special purpose kernel mode registers. This text will not consider the last two sets of registers. The
segment registers are not used much in modern 32-bit operating systems (e.g., Windows, BeOS, and Linux);
since this text is geared around programs written for 32-bit operating systems, there is little need to d
the segment registers. The special purpose kernel mode registers are intended for use by people who wr
operating systems, debuggers, and other system level tools. Such software construction is well beyond the
scope of this text, so once again there is little need to discuss the special purpose kernel mode registers.

The 80x86 (Intel family) CPUs provide several general purpose registers for application use. These
include eight 32-bit registers that have the following names:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The “E” prefix on each name stands for extended. This prefix differentiates the 32-bit registers from the eig
16-bit registers that have the following names:

AX, BX, CX, DX, SI, DI, BP, and SP

Finally, the 80x86 CPUs provide eight 8-bit registers that have the following names:

AL, AH, BL, BH, CL, CH, DL, and DH

Unfortunately, these are not all separate registers. That is, the 80x86 does not provide 24 inde
registers. Instead, the 80x86 overlays the 32-bit registers with the 16-bit registers and it overlays th
registers with the 8-bit registers. The following diagram shows this relationship:

CPU

Memory

I/O Devices
Page 24 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

er

or

sion of
Figure 2.5 80x86 (Intel CPU) General Purpose Registers

The most important thing to note about the general purpose registers is that they are not independent.
Modifying one register will modify at least one other register and may modify as many as three other regis-
ters. For example, modification of the EAX register may very well modify the AL, AH, and AX registers as
well. This fact cannot be overemphasized here. A very common mistake in programs written by beginning
assembly language programmers is register value corruption because the programmer did not fully und-
stand the ramifications of the above diagram.

The EFLAGS register is a 32-bit register that encapsulates several single-bit boolean (true/false) values.
Most of the bits in the EFLAGs register are either reserved for kernel mode (operating system) functions,
are of little interest to the application programmer. Eight of these bits (or flags) are of interest to application
programmers writing assembly language programs. These are the overflow, direction, interrupt disable3,
sign, zero, auxiliary carry, parity, and carry flags. The following diagram shows their layout within the lower
16-bits of the EFLAGS register.

3. Application programs cannot modify the interrupt flag, but we’ll look at this flag later in this text, hence the discus
this flag here.

CX

CH CL

ECX

DX

DH DL

EDX

AX

AL

EAX ESI

EDI

EBP

ESP

SI

BX

BH BL

EBX

DI

BP

SP

AH
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 25

Chapter Two Volume 1

ost all

neral
n

.

it
Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

Of the eight flags that are usable by application programmers, four flags in particular are extremely
valuable: the overflow, carry, sign, and zero flags. Collectively, we will call these four flags the condition
codes4. The state of these flags (boolean variables) will let you test the results of previous computations and
allow you to make decisions in your programs. For example, after comparing two values, the state of the
condition code flags will tell you if one value is less than, equal to, or greater than a second value. The 80x86
CPUs provide special machine instructions that let you test the flags, alone or in various combinations.

The last register of interest is the EIP (instruction pointer) register. This 32-bit register contains the
memory address of the next machine instruction to execute. Although you will manipulate this register
directly in your programs, the instructions that modify its value treat this register as an implicit operand.
Therefore, you will not need to remember much about this register since the 80x86 instruction set effectively
hides it from you.

One important fact that comes as a surprise to those just learning assembly language is that alm
calculations on the 80x86 CPU must involve a register. For example, to add two (memory) variables
together, storing the sum into a third location, you must load one of the memory operands into a register, add
the second operand to the value in the register, and then store the register away in the destination memory
location. Registers are a middleman in nearly every calculation. Therefore, registers are very important in
80x86 assembly language programs.

Another thing you should be aware of is that although the general purpose registers have the name “gen-
eral purpose” you should not infer that you can use any register for any purpose. The SP/ESP register for
example, has a very special purpose (it’s the stack pointer) that effectively prevents you from using it for any
other purpose. Likewise, the BP/EBP register has a special purpose that limits its usefulness as a ge
purpose register. All the 80x86 registers have their own special purposes that limit their use in certain co-
texts. For the time being, you should simply avoid the use of the ESP and EBP registers for generic calcula-
tions and keep in mind that the remaining registers are not completely interchangeable in your programs

2.8 Some Basic Machine Instructions

The 80x86 CPUs provide just over a hundred to many thousands of different machine instructions,
depending on how you define a machine instruction. Even at the low end of the count (greater than 100),
appears as though there are far too many machine instructions to learn in a short period of time. Fortunately,

4. Technically the parity flag is also a condition code, but we will not use that flag in this text.

Overflow
Direction
Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Not very
interesting to
application
programmers

15 0
Page 26 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

use

pical

.

ions.
 source
you don’t need to know all the machine instructions. In fact, most assembly language programs probably
around 30 different machine instructions5. Indeed, you can certainly write several meaningful programs with
only a small handful of machine instructions. The purpose of this section is to provide a small handful of
machine instructions so you can start writing simple HLA assembly language programs right away.

Without question, the MOV instruction is the most often-used assembly language statement. In a ty
program, anywhere from 25-40% of the instructions are typically MOV instructions. As its name suggests,
this instruction moves data from one location to another6. The HLA syntax for this instruction is

mov(source_operand, destination_operand);

The source_operand can be a register, a memory variable, or a constant. The destination_operand may
be a register or a memory variable. Technically the 80x86 instruction set does not allow both operands to be
memory variables; HLA, however, will automatically translate a MOV instruction with two 16- or 32-bit
memory operands into a pair of instructions that will copy the data from one location to another. In a high
level language like Pascal or C/C++, the MOV instruction is roughly equivalent to the following assignment
statement:

destination_operand = source_operand ;

Perhaps the major restriction on the MOV instruction’s operands is that they must both be the same size
That is, you can move data between two eight-bit objects, between two 16-bit objects, or between two 32-bit
objects; you may not, however, mix the sizes of the operands. The following table lists all the legal combina-
tions:

5. Different programs may use a different set of 30 instructions, but few programs use more than 30 distinct instruct
6. Technically, MOV actually copies data from one location to another. It does not destroy the original data in the
operand. Perhaps a better name for this instruction should have been COPY. Alas, it’s too late to change it now.

Table 1: Legal 80x86 MOV Instruction Operands

Source Destination

Reg8
a Reg8

Reg8 Mem8

Mem8 Reg8

constantb Reg8

constant Mem8

Reg16 Reg16

Reg16 Mem16

Mem16 Reg16

constant Reg16

constant Mem16

Reg32 Reg32
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 27

Chapter Two Volume 1

syn

bove

on dis
demon
You should study this table carefully. Most of the general purpose 80x86 instructions use this same -
tax. Note that in addition to the forms above, the HLA MOV instruction lets you specify two memory oper-
ands as the source and destination. However, this special translation that HLA provides only applies to the
MOV instruction; it does not generalize to the other instructions.

The 80x86 ADD and SUB instructions let you add and subtract two operands. Their syntax is nearly
identical to the MOV instruction:

add(source_operand, destination_operand);

sub(source_operand, destination_operand);

The ADD and SUB operands must take the same form as the MOV instruction, listed in the table a7.
The ADD instruction does the following:

destination_operand = destination_operand + source_operand ;

destination_operand += source_operand; // For those who prefer C syntax

Similarly, the SUB instruction does the calculation:

destination_operand = destination_operand - source_operand ;

destination_operand -= source_operand ; // For C fans.

With nothing more than these three instructions, plus the HLA control structures that the next secti-
cusses, you can actually write some sophisticated programs. Here’s a sample HLA program that -
strates these three instructions:

program DemoMOVaddSUB;

#include(“stdlib.hhf”);

static
 i8: int8 := -8;
 i16: int16 := -16;
 i32: int32 := -32;

begin DemoMOVaddSUB;

 // First, print the initial values
 // of our variables.

 stdout.put
 (
 nl,

Reg32 Mem32

Mem32 Reg32

constant Reg32

constant Mem32

a. The suffix denotes the size of the register or memory location.
b. The constant must be small enough to fit in the specified destination
operand

7. Remember, though, that ADD and SUB do not support memory-to-memory operations.

Table 1: Legal 80x86 MOV Instruction Operands
Page 28 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

n

 “Initialized values: i8=”, i8,
 “, i16=”, i16,
 “, i32=”, i32,
 nl
);

 // Compute the absolute value of the
 // three different variables and
 // print the result.
 // Note, since all the numbers are
 // negative, we have to negate them.
 // Using only the MOV, ADD, and SUB
 // instruction, we can negate a value
 // by subtracting it from zero.

 mov(0, al); // Compute i8 := -i8;
 sub(i8, al);
 mov(al, i8);

 mov(0, ax); // Compute i16 := -i16;
 sub(i16, ax);
 mov(ax, i16);

 mov(0, eax); // Compute i32 := -i32;
 sub(i32, eax);
 mov(eax, i32);

 // Display the absolute values:

 stdout.put
 (
 nl,
 “After negation: i8=”, i8,
 “, i16=”, i16,
 “, i32=”, i32,
 nl
);

 // Demonstrate ADD and constant-to-memory
 // operations:

 add(32323200, i32);
 stdout.put(nl, “After ADD: i32=”, i32, nl);

end DemoMOVaddSUB;

Program 2.3 Demonstration of MOV, ADD, and SUB Instructions

2.9 Some Basic HLA Control Structures

The MOV, ADD, and SUB instructions, while valuable, aren’t sufficient to let you write meaningful pro-
grams. You will need to complement these instructions with the ability to make decisions and create loops i
your HLA programs before you can write anything other than a trivial program. HLA provides several high
level control structures that are very similar to control structures found in high level languages. These
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 29

Chapter Two Volume 1

al
ore real

r

ly
er
ill

re
tate

dditional
include IF..THEN..ELSEIF..ELSE..ENDIF, WHILE..ENDWHILE, REPEAT..UNTIL, and so on. By learn-
ing these statements you will be armed and ready to write some real programs.

Before discussing these high level control structures, it’s important to point out that these are not re
80x86 assembly language statements. HLA compiles these statements into a sequence of one or m
assembly language statements for you. Later in this text, you’ll learn how HLA compiles the statements and
you’ll learn how to write pure assembly language code that doesn’t use them. However, you’ll need to learn
many new concepts before you get to that point, so we’ll stick with these high level language statements fo
now since you’re probably already familiar with statements like these from your exposure to high level lan-
guages.

Another important fact to mention is that HLA’s high level control structures are not as high level as
they first appear. The purpose behind HLA’s high level control structures is to let you start writing assemb
language programs as quickly as possible, not to let you avoid the use of real assembly language altogeth.
You will soon discover that these statements have some severe restrictions associated with them and you w
quickly outgrow their capabilities (at least the restricted forms appearing in this section). This is intentional.
Once you reach a certain level of comfort with HLA’s high level control structures and decide you need mo
power than they have to offer, it’s time to move on and learn the real 80x86 instructions behind these s-
ments.

2.9.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to control their execution. Exam-
ples include the IF, WHILE, and REPEAT..UNTIL statements. The syntax for these boolean expressions
represents the greatest limitation of the HLA high level control structures. This is one area where your famil-
iarity with a high level language will work against you – you’ll want to use the same boolean expressions
you use in a high level language and HLA only supports some basic forms.

HLA boolean expressions always take the following forms8:

flag_specification

!flag_specification

register

!register

Boolean_variable

!Boolean_variable

mem_reg relop mem_reg_const

register in LowConst..HiConst

register not in LowConst..HiConst

A flag_specification may be one of the following symbols:

• @c carry: True if the carry is set (1), false if the carry is clear (0).
• @nc no carry: True if the carry is clear (0), false if the carry is set (1).
• @z zero: True if the zero flag is set, false if it is clear.
• @nz not zero: True if the zero flag is clear, false if it is set.
• @o overflow: True if the overflow flag is set, false if it is clear.
• @no no overflow: True if the overflow flag is clear, false if it is set.
• @s sign: True if the sign flag is set, false if it is clear.
• @ns no sign: True if the sign flag is clear, false if it is set.

8. Technically, there are a few more, advanced, forms, but you’ll have to wait a few chapters before seeing these a
formats.
Page 30 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

 to use

ression
e.

n-zero
rks in an

e
as

e

The use of the flag values in a boolean expression is somewhat advanced. You will begin to see how
these boolean expression operands in the next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The exp
evaluates false if the register contains a zero; it evaluates true if the register contains a non-zero valu

If you specify a boolean variable as the expression, the program tests it for zero (false) or no
(true). Since HLA uses the values zero and one to represent false and true, respectively, the test wo
intuitive fashion. Note that HLA requires that stand-alone variables be of type boolean. HLA rejects other
data types. If you want to test some other type against zero/not zero, then use the general boolean expression
discussed next.

The most general form of an HLA boolean expression has two operands and a relational operator. The
following table lists the legal combinations:

Note that both operands cannot be memory operands. In fact, if you think of the Right Operand as th
source operand and the Left Operand as the destination operand, then the two operands must be the same
those allowed for the ADD and SUB instructions.

Also like the ADD and SUB instructions, the two operands must be the same size. That is, they must
both be eight-bit operands, they must both be 16-bit operands, or they must both be 32-bit operands. If th
Right Operand is a constant, it’s value must be in the range that is compatible with the Left Operand.

There is one other issue of which you need to be aware. If the Left Operand is a register and the Right
Operand is a positive constant or another register, HLA uses an unsigned comparison. The next chapter will
discuss the ramifications of this; for the time being, do not compare negative values in a register against a
constant or another register. You may not get an intuitive result.

The IN and NOT IN operators let you test a register to see if it is within a specified range. For example,
the expression “EAX in 2000..2099” evaluates true if the value in the EAX register is between 2000 and
2099 (inclusive). The NOT IN (two words) operator lets you check to see if the value in a register is outside
the specified range. For example, “AL not in ‘a’..’z’” evaluates true if the character in the AL register is not
a lower case alphabetic character.

Here are some examples of legal boolean expressions in HLA:

@c

Bool_var

al

ESI

EAX < EBX

Table 2: Legal Boolean Expressions

Left
Operand

Relational
Operator

Right Operand

Memory Variable

or

Register

= or ==
Memory Variable,

Register,

or

Constant

<> or !=

<

<=

>

>=
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 31

Chapter Two Volume 1
EBX > 5

i32 < -2

i8 > 128

al < i8

eax in 1..100

ch not in ‘a’..’z’

2.9.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement

The HLA IF statement uses the following syntax:

Figure 2.7 HLA IF Statement Syntax

The expressions appearing in this statement must take one of the forms from the previous section. If the
associated expression is true, the code after the THEN executes, otherwise control transfers to the next
ELSEIF or ELSE clause in the statement.

Since the ELSEIF and ELSE clauses are optional, an IF statement could take the form of a single
IF..THEN clause, followed by a sequence of statements, and a closing ENDIF clause. The following is an
example of just such a statement:

if(eax = 0) then

stdout.put(“error: NULL value”, nl);

endif;

if(expression) then

sequence
of one or
more statements

elseif(expression) then

sequence
of one or
more statements

else

sequence
of one or
more statements

endif;

The elseif clause is optional. Zero or more elseif
clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
(or before the endif if there is no else clause).

The else clause is optional. At most one
else clause may appear within an if statement
and it must be the last clause before the
endif.
Page 32 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

 state
ng

end

o

If, during program execution, the expression evaluates true, then the code between the THEN and the
ENDIF executes. If the expression evaluates false, then the program skips over the code between the THEN
and the ENDIF.

Another common form of the IF statement has a single ELSE clause. The following is an example of an
IF statement with an optional ELSE:

if(eax = 0) then

stdout.put(“error: NULL pointer encountered”, nl);

else

stdout.put(“Pointer is valid”, nl);

endif;

If the expression evaluates true, the code between the THEN and the ELSE executes; otherwise the code
between the ELSE and the ENDIF clauses executes.

You can create sophisticated decision-making logic by incorporating the ELSEIF clause into an IF-
ment. For example, if the CH register contains a character value, you can select from a menu of items usi
code like the following:

if(ch = ‘a’) then

stdout.put(“You selected the ‘a’ menu item”, nl);

elseif(ch = ‘b’) then

stdout.put(“You selected the ‘b’ menu item”, nl);

elseif(ch = ‘c’) then

stdout.put(“You selected the ‘c’ menu item”, nl);

else

stdout.put(“Error: illegal menu item selection”, nl);

endif;

Although this simple example doesn’t demonstrate it, HLA does not require an ELSE clause at the
of a sequence of ELSEIF clauses. However, when making multi-way decisions, it’s always a good idea to
provide an ELSE clause just in case an error arises. Even if you think it’s impossible for the ELSE clause t
execute, just keep in mind that future modifications to the code could possibly void this assertion, so it’s a
good idea to have error reporting statements built into your code.

2.9.3 The WHILE..ENDWHILE Statement

The WHILE statement uses the following basic syntax:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 33

Chapter Two Volume 1

 the

 of
Figure 2.8 HLA While Statement Syntax

This statement evaluates the boolean expression. If it is false, control immediately transfers to the first
statement following the ENDWHILE clause. If the value of the expression is true, then control falls through
to the body of the loop. After the loop body executes, control transfers back to the top of the loop where
WHILE statement retests the loop control expression. This process repeats until the expression evaluates
false.

Note that the WHILE loop, like its high level language siblings, tests for loop termination at the top
the loop. Therefore, it is quite possible that the statements in the body of the loop will not execute (if the
expression is false when the code first executes the WHILE statement). Also note that the body of the
WHILE loop must, at some point, modify the value of the boolean expression or an infinite loop will result.

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);
add(1, i);

endwhile;

2.9.4 The FOR..ENDFOR Statement

The HLA FOR loop takes the following general form:

for(Initial_Stmt; Termination_Expression; Post_Body_Statement) do

<< Loop Body >>

endfor;

This is equivalent to the following WHILE statement:

Initial_Stmt;
while(Termination_expression) do

<< loop_body >>

Post_Body_Statement;

endwhile;

Initial_Stmt can be any single HLA/80x86 instruction. Generally this statement initializes a register or
memory location (the loop counter) with zero or some other initial value. Termination_expression is an

while(expression) do

sequence
of one or
more statements

endwhile;

The expression in the WHILE
statement has the same
restrictions as the IF statement.

Loop Body
Page 34 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

p

pro
HLA boolean expression (same format that WHILE allows). This expression determines whether the loo
body will execute. The Post_Body_Statement executes at the bottom of the loop (as shown in the WHILE
example above). This is a single HLA statement. Usually it is an instruction like ADD that modifies the
value of the loop control variable.

The following gives a complete example:

for(mov(0, i); i < 10; add(1, i)) do

stdout.put(“i=”, i, nl);

endfor;

// The above, rewritten as a while loop, becomes:

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);

add(1, i);

endwhile;

2.9.5 The REPEAT..UNTIL Statement

The HLA repeat..until statement uses the following syntax:

Figure 2.9 HLA Repeat..Until Statement Syntax

The HLA REPEAT..UNTIL statement tests for loop termination at the bottom of the loop. Therefore,
the statements in the loop body always execute at least once. Upon encountering the UNTIL clause, the -
gram will evaluate the expression and repeat the loop if the expression is false (that is, it repeats while false).
If the expression evaluates true, the control transfers to the first statement following the UNTIL clause.

The following simple example demonstrates one use for the REPEAT..UNTIL statement:

mov(10, ecx);
repeat

stdout.put(“ecx = “, ecx, nl);
sub(1, ecx);

until(ecx = 0);

repeat

sequence
of one or
more statements

until(expression);

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Loop Body
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 35

Chapter Two Volume 1

ng
deed,
If the loop body will always execute at least once, then it is more efficient to use a REPEAT..UNTIL
loop rather than a WHILE loop.

2.9.6 The BREAK and BREAKIF Statements

The BREAK and BREAKIF statements provide the ability to prematurely exit from a loop. They use the
following syntax:

Figure 2.10 HLA Break and Breakif Syntax

The BREAK statement exits the loop that immediately contains the break; The BREAKIF statement
evaluates the boolean expression and terminates the containing loop if the expression evaluates true.

2.9.7 The FOREVER..ENDFOR Statement

The FOREVER statement uses the following syntax:

Figure 2.11 HLA Forever Loop Syntax

This statement creates an infinite loop. You may also use the BREAK and BREAKIF statements alo
with FOREVER..ENDFOR to create a loop that tests for loop termination in the middle of the loop. In
this is probably the most common use of this loop as the following example demonstrates:

forever

stdout.put(“Enter an integer less than 10: “);
stdin.get(i);
breakif(i < 10);
stdout.put(“The value needs to be less than 10!”, nl);

endfor;

break;

The expression in the BREAKIF
statement has the same
restrictions as the IF statement.

breakif(expression);

forever

sequence
of one or
more statements

endfor;

Loop Body
Page 36 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

,
e
an

s

2.9.8 The TRY..EXCEPTION..ENDTRY Statement

The HLA TRY..EXCEPTION..ENDTRY statement provides very powerful exception handling capabil-
ities. The syntax for this statement is the following:

Figure 2.12 HLA Try..Except..Endtry Statement Syntax

The TRY..ENDTRY statement protects a block of statements during execution. If these statements
between the TRY clause and the first EXCEPTION clause, execute without incident, control transfers to th
first statement after the ENDTRY immediately after executing the last statement in the protected block. If
error (exception) occurs, then the program interrupts control at the point of the exception (that is, the pro-
gram raises an exception). Each exception has an unsigned integer constant associated with it, known as the
exception ID. The “excepts.hhf” header file in the HLA Standard Library predefines several exception IDs,
although you may create new ones for your own purposes. When an exception occurs, the system compare
the exception ID against the values appearing in each of the one or more EXCEPTION clauses following the
protected code. If the current exception ID matches one of the EXCEPTION values, control continues with
the block of statements immediately following that EXCEPTION. After the exception handling code com-
pletes execution, control transfers to the first statement following the ENDTRY.

If an exception occurs and there is no active TRY..ENDTRY statement, or the active TRY..ENDTRY
statements do not handle the specific exception, the program will abort with an error message.

The following sample program demonstrates how to use the TRY..ENDTRY statement to protect the
program from bad user input:

try

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

endtry;

Statements to test

At least one
exception handling
block.

Zero or more (optional)
exception handling
blocks.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 37

Chapter Two Volume 1

e),

the

without

 and
ge
rint

e

nt to exit
repeat

mov(false, GoodInteger); // Note: GoodInteger must be a boolean var.
try

stdout.put(“Enter an integer: “);
stdin.get(i);
mov(true, GoodInteger);

exception(ex.ConversionError);

stdout.put(“Illegal numeric value, please re-enter”, nl);

exception(ex.ValueOutOfRange);

stdout.put(“Value is out of range, please re-enter”, nl);

endtry;

until(GoodInteger);

The REPEAT..UNTIL loop repeats this code as long as there is an error during input. Should an excep-
tion occur, control transfers to the EXCEPTION clauses to see if a conversion error (e.g., illegal characters
in the number) or a numeric overflow occurs. If either of these exceptions occur, then they print the appropri-
ate message and control falls out of the TRY..ENDTRY statement and the REPEAT..UNTIL loop repeats
since GoodInteger was never set to true. If a different exception occurs (one that is not handled in this cod
then the program aborts with the specified error message9.

Please see the “excepts.hhf” header file that accompanies the HLA release for a complete list of all
exception ID codes. The HLA documentation will describe the purpose of each of these exception codes.

2.10 Introduction to the HLA Standard Library

There are two reasons HLA is much easier to learn and use than standard assembly language. The first
reason is HLA’s high level syntax for declarations and control structures. This HLA feature leverages your
high level language knowledge, reducing the need to learn arcane syntax, allowing you to learn assembly
language more efficiently. The other half of the equation is the HLA Standard Library. The HLA Standard
Library provides lot of commonly needed, easy to use, assembly language routines that you can call
having to write this code yourself (or even learn how to write yourself). This eliminates one of the larger
stumbling blocks many people have when learning assembly language: the need for sophisticated I/O
support code in order to write basic statements. Prior to the advent of a standardized assembly langua
library, it often took weeks of study before a new assembly language programmer could do as much as p
a string to the display. With the HLA Standard Library, this roadblock is removed and you can concentrat
on learning assembly language concepts rather than learning low-level I/O details that are specific to a given
operating system.

A wide variety of library routines is only part of HLA’s support. After all, assembly language libraries
have been around for quite some time10. HLA’s Standard Library continues the HLA tradition by providing
a high level language interface to these routines. Indeed, the HLA language itself was originally designed
specifically to allow the creation of a high-level accessible set of library routines11. This high level interface,

9. An experienced programmer may wonder why this code uses a boolean variable rather than a BREAKIF stateme
the REPEAT..UNTIL loop. There are some technical reasons for this that you will learn about later in this text.
10. E.g., the UCR Standard Library for 80x86 Assembly Language Programmers.
11. HLA was created because MASM was insufficient to support the creation of the UCR StdLib v2.0.
Page 38 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

f

on for a
combined with the high level nature of many of the routines in the library, packs a surprising amount o
power in an easy to use package.

The HLA Standard Library consists of several modules organized by category. The following table lists
many of the modules that are available12:

Later sections of this text will explain many of these modules in greater detail. This section will concen-
trate on the most important routines (at least to beginning HLA programmers), the stdio library.

12. Since the HLA Standard Library is expanding, this list is probably out of date. Please see the HLA documentati
current list of Standard Library modules.

Table 3: HLA Standard Library Modules

Name Description

args Command line parameter parsing support routines.

conv Various conversions between strings and other values.

cset Character set functions.

DateTime Calendar, date, and time functions.

excepts Exception handling routines.

fileio File input and output routines

hla Special HLA constants and other values.

Linux Linux system calls (HLA Linux version only).

math Transcendental and other mathematical functions.

memory Memory allocation, deallocation, and support code.

misctypes Miscellaneous data types.

patterns The HLA pattern matching library.

rand Pseudo-random number generators and support code.

stdin User input routines

stdout Provides user output and several other support routines.

stdlib A special include file that links in all HLA standard library modules.

strings HLA’s powerful string library.

tables Table (associative array) support routines.

win32 Constants used in Windows calls (HLA Win32 version, only)

x86 Constants and other items specific to the 80x86 CPU.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 39

Chapter Two Volume 1

odule

feed pair

d
g

n the

’s name
2.10.1 Predefined Constants in the STDIO Module

Perhaps the first place to start is with a description of some common constants that the STDIO m
defines for you. One constant you’ve seen already in code appearing in this chapter. Consider the following
(typical) example:

stdout.put(“Hello World”, nl);

The nl appearing at the end of this statement stands for newline. The nl identifier is not a special HLA
reserved word, nor is it specific to the stdout.put statement. Instead, it’s simply a predefined constant that
corresponds to the string containing the standard end of line sequence (this is a carriage return/line
under Windows or just a line feed under Linux).

In addition to the nl constant, the HLA standard I/O library module defines several other useful charac-
ter constants. They are

• stdio.bell The ASCII bell character. Beeps the speaker when printed.
• stdio.bs The ASCII backspace character.
• stdio.tab The ASCII tab character.
• stdio.eoln A linefeed character (even under Windows).
• stdio.lf The ASCII linefeed character.
• stdio.cr The ASCII carriage return character.

Except for nl, these characters appear in the stdio namespace (and, therefore, require the “stdio.” prefix).
The placement of these ASCII constants within the stdio namespace is to help avoid naming conflicts with
your own variables. The nl name does not appear within a namespace because you will use it very often and
typing stdio.nl would get tiresome very quickly.

2.10.2 Standard In and Standard Out

Many of the HLA I/O routines have a stdin or stdout prefix. Technically, this means that the standar
library defines these names in a namespace13. In practice, this prefix suggests where the input is comin
from (the standard input device) or going to (the standard output device). By default, the standard input
device is the system keyboard. Likewise, the default standard output device is the console display. So, in
general, statements that have stdin or stdout prefixes will read and write data on the console device.

When you run a program from the command line window (or shell), you have the option of redirecting
the standard input and/or standard output devices. A command line parameter of the form “>outfile” redi-
rects the standard output device to the specified file (outfile). A command line parameter of the form
“<infi le” redirects the standard input so that its data comes from the specified input file (infile). The follow-
ing examples demonstrate how to use these parameters when running a program named “testpgm” i
command window14:

testpgm <input.data
testpgm >output.txt

testpgm <in.txt >output.txt

13. Namespaces will be the subject of a later chapter.
14. Note for Linux users: depending on how your system is set up, you may need to type “./” in front of the program
to actually execute the program, e.g., “./testpgm <input.data”.
Page 40 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

e,

l param

 con
er

pt

of

hen

arks.
2.10.3 The stdout.newln Routine

The stdout.newln procedure prints a newline sequence to the standard output device. This is functionally
equivalent to saying “stdout.put(nl);” Of course, the call to stdout.newln is sometimes a little more conve-
nient. Example of call:

stdout.newln();

2.10.4 The stdout.puti X Routines

The stdout.puti8, stdout.puti16, and stdout.puti32 library routines print a single parameter (one byt
two bytes, or four bytes, respectively) as a signed integer value. The parameter may be a constant, a register,
or a memory variable, as long as the size of the actual parameter is the same as the size of the forma-
eter.

These routines print the value of their specified parameter to the standard output device. These routines
will print the value using the minimum number of print positions possible. If the number is negative, these
routines will print a leading minus sign. Here are some examples of calls to these routines:

stdout.puti8(123);
stdout.puti16(DX);

stdout.puti32(i32Var);

2.10.5 The stdout.puti XSize Routines

The stdout.puti8Size, stdout.puti16Size, and stdout.puti32Size routines output signed integer values to
the standard output, just like the stdout.putiX routines. These routines, however, provide more control over
the output; they let you specify the (minimum) number of print positions the value will require on output.
These routines also let you specify a padding character should the print field be larger than the minimum
needed to display the value. These routines require the following parameters:

stdout.puti8Size(Value8, width, padchar);
stdout.puti16Size(Value16,width, padchar);
stdout.puti32Size(Value32, width, padchar);

The ValueX parameter can be a constant, a register, or a memory location of the specified size. The width
parameter can be any signed integer constant that is between -256 and +256; this parameter may be a-
stant, register (32-bit), or memory location (32-bit). The padchar parameter should be a single charact
value.

Like the stdout.putiX routines, these routines print the specified value as a signed integer constant to the
standard output device. These routines, however, let you specify the field width for the value. The field width
is the minimum number of print positions these routines will use when printing the value. The width param-
eter specifies the minimum field width. If the number would require more print positions (e.g., if you attem
to print “1234” with a field width of two), then these routines will print however many characters are neces-
sary to properly display the value. On the other hand, if the width parameter is greater than the number
character positions required to display the value, then these routines will print some extra padding characters
to ensure that the output has at least width character positions. If the width value is negative, the number is
left justified in the print field; if the width value is positive, the number is right justified in the print field.

If the absolute value of the width parameter is greater than the minimum number of print positions, t
these stdout.putiXSize routines will print a padding character before or after the number. The padchar
parameter specifies which character these routines will print. Most of the time you would specify a space as
the pad character; for special cases, you might specify some other character. Remember, the padchar param-
eter is a character value; in HLA character constants are surrounded by apostrophes, not quotation m
You may also specify an eight-bit register as this parameter.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 41

Chapter Two Volume 1

 of v

d

 list.

t

r. How-
Here is a short HLA program that demonstrates the use of the puti32Size routine to display a listal-
ues in tabular form:

program NumsInColumns;

#include(“stdlib.hhf”);

var
 i32: int32;
 ColCnt: int8;

begin NumsInColumns;

 mov(96, i32);
 mov(0, ColCnt);
 while(i32 > 0) do

 if(ColCnt = 8) then

 stdout.newln();
 mov(0, ColCnt);

 endif;
 stdout.puti32Size(i32, 5, ‘ ‘);
 sub(1, i32);
 add(1, ColCnt);

 endwhile;
 stdout.newln();

end NumsInColumns;

Program 2.4 Columnar Output Demonstration Using stdio.Puti32Size

2.10.6 The stdout.put Routine

The stdout.put routine15 is one of the most flexible output routines in the standard output library mo-
ule. It combines most of the other output routines into a single, easy to use, procedure.

The generic form for the stdout.put routine is the following:

stdout.put(list_of_values_to_output);

The stdout.put parameter list consists of one or more constants, registers, or memory variables, each
separated by a comma. This routine displays the value associated with each parameter appearing in the
Since we’ve already been using this routine throughout this chapter, you’ve already seen lots of examples of
this routine’s basic form. It is worth pointing out that this routine has several additional features not apparen
in the examples appearing in this chapter. In particular, each parameter can take one of the following two
forms:

value

15. Stdout.put is actually a macro, not a procedure. The distinction between the two is beyond the scope of this chapte
ever, this text will describe their differences a little later.
Page 42 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

 the

se

e
value:width

The value may be any legal constant, register, or memory variable object. In this chapter, you’ve seen
string constants and memory variables appearing in the stdout.put parameter list. These parameters corre-
spond to the first form above. The second parameter form above lets you specify a minimum field width,
similar to the stdout.putiXSize routines16. The following sample program produces the same output as
previous program; however, it uses stdout.put rather than stdout.puti32Size:

program NumsInColumns2;

#include(“stdlib.hhf”);

var
 i32: int32;
 ColCnt: int8;

begin NumsInColumns2;

 mov(96, i32);
 mov(0, ColCnt);
 while(i32 > 0) do

 if(ColCnt = 8) then

 stdout.newln();
 mov(0, ColCnt);

 endif;
 stdout.put(i32:5);
 sub(1, i32);
 add(1, ColCnt);

 endwhile;
 stdout.put(nl);

end NumsInColumns2;

Program 2.5 Demonstration of stdout.put Field Width Specification

The stdout.put routine is capable of much more than the few attributes this section describes. This text
will introduce those additional capabilities as appropriate.

2.10.7 The stdin.getc Routine.

The stdin.getc routine reads the next available character from the standard input device’s input buffer17.
It returns this character in the CPU’s AL register. The following example program demonstrates a simple u
of this routine:

16. Note that you cannot specify a padding character when using the stdout.put routine; the padding character defaults to th
space character. If you need to use a different padding character, call the stdout.putiXSize routines.
17. “Buffer” is just a fancy term for an array.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 43

Chapter Two Volume 1

 b
program charInput;

#include(“stdlib.hhf”);

var
 counter: int32;

begin charInput;

 // The following repeats as long as the user
 // confirms the repetition.

 repeat

 // Print out 14 values.

 mov(14, counter);
 while(counter > 0) do

 stdout.put(counter:3);
 sub(1, counter);

 endwhile;

 // Wait until the user enters ‘y’ or ‘n’.

 stdout.put(nl, nl, “Do you wish to see it again? (y/n):”);
 forever

 stdin.readLn();
 stdin.getc();
 breakif(al = ‘n’);
 breakif(al = ‘y’);
 stdout.put(“Error, please enter only ‘y’ or ‘n’: “);

 endfor;
 stdout.newln();

 until(al = ‘n’);

end charInput;

Program 2.6 Demonstration of the stdin.getc() Routine

This program uses the stdin.ReadLn routine to force a new line of input from the user. A description of
stdin.ReadLn appears just a little later in this chapter.

2.10.8 The stdin.geti X Routines

The stdin.geti8, stdin.geti16, and stdin.geti32 routines read eight, 16, and 32-bit signed integer values
from the standard input device. These routines return their values in the AL, AX, or EAX register, respec-
tively. They provide the standard mechanism for reading signed integer values from the user in HLA.

Like the stdin.getc routine, these routines read a sequence of characters from the standard inputuffer.
They begin by skipping over any white space characters (spaces, tabs, etc.) and then convert the following
stream of decimal digits (with an optional, leading, minus sign) into the corresponding integer. These rou-
Page 44 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

 a
tines raise an exception (that you can trap with the TRY..ENDTRY statement) if the input sequence is not
valid integer string or if the user input is too large to fit in the specified integer size. Note that values read by
stdin.geti8 must be in the range -128..+127; values read by stdin.geti16 must be in the range
-32,768..+32,767; and values read by stdin.geti32 must be in the range -2,147,483,648..+2,147,483,647.

The following sample program demonstrates the use of these routines:

program intInput;

#include(“stdlib.hhf”);

var
 i8: int8;
 i16: int16;
 i32: int32;

begin intInput;

 // Read integers of varying sizes from the user:

 stdout.put(“Enter a small integer between -128 and +127: “);
 stdin.geti8();
 mov(al, i8);

 stdout.put(“Enter a small integer between -32768 and +32767: “);
 stdin.geti16();
 mov(ax, i16);

 stdout.put(“Enter an integer between +/- 2 billion: “);
 stdin.geti32();
 mov(eax, i32);

 // Display the input values.

 stdout.put
 (
 nl,
 “Here are the numbers you entered:”, nl, nl,
 “Eight-bit integer: “, i8:12, nl,
 “16-bit integer: “, i16:12, nl,
 “32-bit integer: “, i32:12, nl
);

end intInput;

Program 2.7 stdin.getiX Example Code

You should compile and run this program and test what happens when you enter a value that is out of
range or enter an illegal string of characters.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 45

Chapter Two Volume 1

d

er

mpt.

b

 space
and then.

imes.

ou

me
2.10.9 The stdin.readLn and stdin.flushInput Routines

Whenever you call an input routine like stdin.getc or stdin.geti32, the program does not necessarily rea
the value from the user at that moment. Instead, the HLA Standard Library buffers the input by reading a
whole line of text from the user. Calls to input routines will fetch data from this input buffer until the buffer
is empty. While this buffering scheme is efficient and convenient, sometimes it can be confusing. Consid
the following code sequence:

stdout.put("Enter a small integer between -128 and +127: ");
stdin.geti8();
mov(al, i8);

stdout.put("Enter a small integer between -32768 and +32767: ");
stdin.geti16();
mov(ax, i16);

Intuitively, you would expect the program to print the first prompt message, wait for user input, print the
second prompt message, and wait for the second user input. However, this isn’t exactly what happens. For
example if you run this code (from the sample program in the previous section) and enter the text “123 456”
in response to the first prompt, the program will not stop for additional user input at the second pro
Instead, it will read the second integer (456) from the input buffer read during the execution of the
stdin.geti8 call.

In general, the stdin routines only read text from the user when the input buffer is empty. As long as the
input buffer contains additional characters, the input routines will attempt to read their data from the uffer.
You may take advantage of this behavior by writing code sequences such as the following:

stdout.put(“Enter two integer values: “);
stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

This sequence allows the user to enter both values on the same line (separated by one or more white
characters) thus preserving space on the screen. So the input buffer behavior is desirable every now

Unfortunately, the buffered behavior of the input routines is definitely counter-intuitive at other t
Fortunately, the HLA Standard Library provides two routines, stdin.readLn and stdin.flushInput, that let you
control the standard input buffer. The stdin.readLn routine discards everything that is in the input buffer and
immediately requires the user to enter a new line of text. The stdin.flushInput routine simply discards every-
thing that is in the buffer. The next time an input routine executes, the system will require a new line of input
from the user. You would typically call stdin.readLn immediately before some standard input routine; y
would normally call stdin.flushInput immediately after a call to a standard input routine.

Note: If you are calling stdin.readLn and you find that you are having to input your data twice, this is a
good indication that you should be calling stdin.flushInput rather than stdin.readLn. In general, you should
always be able to call stdin.flushInput to flush the input buffer and read a new line of data on the next input
call. The stdin.readLn routine is rarely necessary, so you should use stdin.flushInput unless you really need
to immediately force the input of a new line of text.

2.10.10The stdin.get Macro

The stdin.get macro combines many of the standard input routines into a single call, in much the sa
way that stdout.put combines all of the output routines into a single call. Actually, stdin.get is much easier to
use than stdout.put since the only parameters to this routine are a list of variable names.

Let’s rewrite the example given in the previous section:

stdout.put(“Enter two integer values: “);
Page 46 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

ge

,

pro

.

stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

Using the stdin.get macro, we could rewrite this code as:

stdout.put(“Enter two integer values: “);
stdin.get(intval, AnotherIntVal);

As you can see, the stdin.get routine is a little more convenient to use.

Note that stdin.get stores the input values directly into the memory variables you specify in the parame-
ter list; it does not return the values in a register unless you actually specify a register as a parameter. The
stdin.get parameters must all be variables or registers18.

2.11 Putting It All Together

This chapter has covered a lot of ground! While you’ve still got a lot to learn about assembly langua
programming, this chapter, combined with your knowledge of high level languages, provides just enough
information to let you start writing real assembly language programs.

In this chapter, you’ve seen the basic format for an HLA program. You’ve seen how to declare integer,
character, and boolean variables. You have taken a look at the internal organization of the Intel 80x86 CPU
family and learned about the MOV, ADD, and SUB instructions. You’ve looked at the basic HLA high level
language control structures (IF, WHILE, REPEAT, FOR, BREAK, BREAKIF, FOREVER, and TRY) as
well as what constitutes a legal boolean expression in these statements. Finally, this chapter has introduced
several commonly-used routines in the HLA Standard Library.

You might think that knowing only three machine instructions is hardly sufficient to write meaningful
programs. However, those three instructions (mov, add, and sub), combined with the HLA high level control
structures and the HLA Standard Library routines are actually equivalent to knowing several dozen machine
instructions. Certainly enough to write simple programs. Indeed, with only a few more arithmetic instruc-
tions plus the ability to write your own procedures, you’ll be able to write almost any program. Of course,
your journey into the world of assembly language has only just begun; you’ll learn some more instructions
and how to use them, starting in the next chapter.

2.12 Sample Programs

This section contains several little HLA programs that demonstrate some of HLA’s features appearing in
this chapter. These short examples also demonstrate that it is possible to write meaningful (if simple) -
grams in HLA using nothing more than the information appearing in this chapter. You may find all of the
sample programs appearing in this section in the “ch02” subdirectory of the “volume1” directory in the soft-
ware that accompanies this text.

2.12.1 Powers of Two Table Generation

The following sample program generates a table listing all the powers of two between 2**0 and 2**30.

18. Note that register input is always in hexadecimal or base 16. The next chapter will discuss hexadecimal numbers
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 47

Chapter Two Volume 1
// PowersOfTwo-
//
// This program generates a nicely-formatted
// “Powers of Two” table. It computes the
// various powers of two by successively
// doubling the value in the pwrOf2 variable.

program PowersOfTwo;
#include(“stdlib.hhf”);

static

 pwrOf2: int32;
 LoopCntr: int32;

begin PowersOfTwo;

 // Print a start up banner.

 stdout.put(“Powers of two: “, nl, nl);

 // Initialize “pwrOf2” with 2**0 (two raised to the zero power).

 mov(1, pwrOf2);

 // Because of the limitations of 32-bit signed integers,
 // we can only display 2**0..2**30.

 mov(0, LoopCntr);
 while(LoopCntr < 31) do

 stdout.put(“2**(“, LoopCntr:2, “) = “, pwrOf2:10, nl);

 // Double the value in pwrOf2 to compute the
 // next power of two.

 mov(pwrOf2, eax);
 add(eax, eax);
 mov(eax, pwrOf2);

 // Move on to the next loop iteration.

 inc(LoopCntr);

 endwhile;
 stdout.newln();

end PowersOfTwo;

Program 2.8 Powers of Two Table Generator Program

2.12.2 Checkerboard Program

This short little program demonstrates how to generate a checkerboard pattern with HLA.
Page 48 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
// CheckerBoard-
//
// This program demonstrates how to draw a
// checkerboard using a set of nested while
// loops.

program CheckerBoard;
#include(“stdlib.hhf”);

static

 xCoord: int8; // Counts off eight squares in each row.
 yCoord: int8; // Counts off four pairs of squares in each column.
 ColCntr: int8; // Counts off four rows in each square.

begin CheckerBoard;

 mov(0, yCoord);
 while(yCoord < 4) do

 // Display a row that begins with black.

 mov(4, ColCntr);
 repeat

 // Each square is a 4x4 group of
 // spaces (white) or asterisks (black).
 // Print out one row of asterisks/spaces
 // for the current row of squares:

 mov(0, xCoord);
 while(xCoord < 4) do

 stdout.put(“**** “);
 add(1, xCoord);

 endwhile;
 stdout.newln();
 sub(1, ColCntr);

 until(ColCntr = 0);

 // Display a row that begins with white.

 mov(4, ColCntr);
 repeat

 // Print out a single row of
 // spaces/asterisks for this
 // row of squares:

 mov(0, xCoord);
 while(xCoord < 4) do

 stdout.put(“ ****”);
 add(1, xCoord);

 endwhile;
 stdout.newln();
 sub(1, ColCntr);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 49

Chapter Two Volume 1
 until(ColCntr = 0);

 add(1, yCoord);

 endwhile;

end CheckerBoard;

Program 2.9 Checkerboard Generation Program

2.12.3 Fibonacci Number Generation

The Fibonacci sequence is very important to certain algorithms in Computer Science and other fields.
The following sample program generates a sequence of Fibonacci numbers for n=1..40.

// This program generates the fibonocci
// sequence for n=1..40.
//
// The fibonocci sequence is defined recursively
// for positive integers as follows:
//
// fib(1) = 1;
// fib(2) = 1;
// fib(n) = fib(n-1) + fib(n-2).
//
// This program provides an iterative solution.

program fib;
#include(“stdlib.hhf”);

static

 FibCntr: int32;
 CurFib: int32;
 LastFib: int32;
 TwoFibsAgo: int32;

begin fib;

 // Some simple initialization:

 mov(1, LastFib);
 mov(1, TwoFibsAgo);

 // Print fib(1) and fib(2) as a special case:

 stdout.put
 (
 “fib(1) = 1”, nl
 “fib(2) = 1”, nl
Page 50 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
);

 // Use a loop to compute the remaining fib values:

 mov(3, FibCntr);
 while(FibCntr <= 40) do

 // Get the last two computed fibonocci values
 // and add them together:

 mov(LastFib, ebx);
 mov(TwoFibsAgo, eax);
 add(ebx, eax);

 // Save the result and print it:

 mov(eax, CurFib);
 stdout.put(“fib(“,FibCntr:2, “) =”, CurFib:10, nl);

 // Recycle current LastFib (in ebx) as TwoFibsAgo,
 // and recycle CurFib as LastFib.

 mov(eax, LastFib);
 mov(ebx, TwoFibsAgo);

 // Bump up our loop counter:

 add(1, FibCntr);

 endwhile;

end fib;

Program 2.10 Fibonacci Sequence Generator
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 51

Chapter Two Volume 1
Page 52 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Hello, World of Assembly Language Chapter Two
	2.1 Chapter Overview
	2.2 Installing the HLA Distribution Package
	2.2.1 Installation Under Windows
	2.2.2 Installation Under Linux
	2.2.3 Installing “Art of Assembly” Related Files

	2.3 The Anatomy of an HLA Program
	2.4 Some Basic HLA Data Declarations
	2.5 Boolean Values
	2.6 Character Values
	2.7 An Introduction to the Intel 80x86 CPU Family
	2.8 Some Basic Machine Instructions
	2.9 Some Basic HLA Control Structures
	2.9.1 Boolean Expressions in HLA Statements
	2.9.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement
	2.9.3 The WHILE..ENDWHILE Statement
	2.9.4 The FOR..ENDFOR Statement
	2.9.5 The REPEAT..UNTIL Statement
	2.9.6 The BREAK and BREAKIF Statements
	2.9.7 The FOREVER..ENDFOR Statement
	2.9.8 The TRY..EXCEPTION..ENDTRY Statement

	2.10 Introduction to the HLA Standard Library
	2.10.1 Predefined Constants in the STDIO Module
	2.10.2 Standard In and Standard Out
	2.10.3 The stdout.newln Routine
	2.10.4 The stdout.putiX Routines
	2.10.5 The stdout.putiXSize Routines
	2.10.6 The stdout.put Routine
	2.10.7 The stdin.getc Routine.
	2.10.8 The stdin.getiX Routines
	2.10.9 The stdin.readLn and stdin.flushInput Routines
	2.10.10 The stdin.get Macro

	2.11 Putting It All Together
	2.12 Sample Programs
	2.12.1 Powers of Two Table Generation
	2.12.2 Checkerboard Program
	2.12.3 Fibonacci Number Generation

