Hello, World of Assembly Language

Hello, World of Assembly Language Chapter Two

2.1

Chapter Overview

This chapter is a “quick-start” chapter that lets you start writing basic assembly language programs right
away. This chapter presents the basic syntax of an HLA (HiglellA&sssembly) program, introduces you to
the Intel CPU architecture, prdes a handful of data declarations and machine instructions, describes some
utility routines you can call in the HLA Standard Libraaynd then shes you hev to write some simple
assembly language programs. By the conclusion of this chgpteshould understand the basic syntax of
an HLA program and be prepared to start learninglaaguage features in subsequent chapters.

2.2

Installing the HLA Distribution Package

Before you can learn assembly language programming using HLA, you mtstuticessfully install
HLA on your system. CurrentlfLA is available for the Linux antVindows operating system&his see
tion explains hev to install HLA on these tvsystems. If HLA is already running on your system, you may
skip to the ngt major section in this chapter

The latest grsion of HLA is aailable from thaNebster web seer at
http://webstecs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you should
select the latest version of HLA for download to your computer. The HLA distribution is provided in a “Zip
File” compressed format. Under Windows, you will need a decompressor program like PKUNZIP or WinZip
in order to extract the HLA files from this zipped archive file; under Linux, you will use the GZIP and TAR
programs to decompress and extract HLA. A detailed description of the use of these decompression products
is beyond the scope of this manual, please consult the software vendor’s documentation or their web page for
information concerning the use of these products; this discussion will only briefly describe how to use them
to extract important HLA files.

This text assumes that you will unzip the HLA distribution into the root directory of your C: drive under
Windows, or to the “/usr/hla” directory under Linux. You can certainly install HLA anywhere you want, but
you will have to adjust the following descriptions if you install HLA somewhere else. If possible, you
should install HLA using root/administrator priviledges; regardless, you should make sure the permissions
are set properly on the files so everyone has read and execute access to the HLA files; if you are unsure how
to do this, please consult your operating system’s documentation or consult a system administrator.

HLA is a console application. In order to run the HLA compiler you must run the command window
program (this is “command.com” on Windows 95 and 98, or “cmd.exe” on Windows NT and Windows
2000; Linux users typically run “bash” or some other shell). This also means that you should be familiar
with some simple “command line interface” (CLI) or “shell” commands.

Most Windows distributions let you run the command prompt windows from the Start menu or from a
submenu hanging off the start menu (you may also select “RUN” from the Start menu and type “cmd” as the
program name). This text assumes that you are familiar with the Windows command window and you know
how to use some basic command window commands (e.g., dir, del, rename, etc.). If you have never before
used the Windows command line interpreter, you should consult an appropriate text to learn a few basic
commands.

Most Linux distributions run “bash” or some other shell program whenever you open up a terminal win-
dow (e.g., a GNOME or KDE terminal window or an X-TERM window). There are some minor differences
between the shells running under Linux, this document assumes that you are using GNU’s “bash” shell.
Again, this text assumes that you are comfortable with a few commands like Is, rm, and mv. If you have
never used a Unix shell program before, you should consult an appropriate text or the on-line documentation
to learn a few basic commands.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell

Chapter Two Volume 1

Before you can actually run the HLA compjlgou must set the systemegution path and set upn-
ous erironment \ariables.The following subsectionsxglain hav to do this undeWindows and then
Linux.

221

Pagel?2

Installation Under Windows

HLA is not a stand alone program. It is a compiler that translates HLA source code inver-kevel
assembly languageA separate assembleuch as MASM, then completes the processing of thiddeel
intermediate code to produce an object colge fFinally you must link the object code output from the
assembler using a liek program. Typically you will link the object code produced by one or more HLA
source fies with theHLA Standard Library (hlalitb) and, possiblyseveral operating system specifi
library files (e.g., krnel32.lib undewindows). Most of this actity takes place transparently wheere you
ask HLA to compile your HLA sourceldis). Havever, for the whole process to run smoothfpu must
have installed HLA and all the supporef correctly This section will discuss moto set up HLA on your
Windows system.

First, you will need an HLA distriltion forWindows. The latest grsion of HLA is alvays &ailable
on Webster at http://webstes.ucredu. You should go there andwnoload the latestersion if you do not
already possess it.

As noted earlierHLA is not a stand alone assembl@he HLA package contains the HLA compijler
the HLA Standard Libraryand a set of includelds for the HLA Standard Librarylf you write an HLA
program with just this code, HLA will produce an "ASMrefand then stopTo produce anxecutable fe
you will need Microsofs MASM and LINK programs, along with soriéindows library fies, to complete
the process.The easiest ay to get all the fés you need is to daload the MASM32" package from
http://www pdg.com.au/home/hutch/masm.htm oy afthe other places on the net where you aaeh the
MASM32 package (Whster maintains a current link if this link is dead). Once you unzip lfnis’s easy
to install the MASM32 package using the install program it suppl¥si must install MASM32 (or
MASMI/LINK/WIin32 library files) bebre HLA will function properly.

Here are the steps | went through to install MASM32 on my system:

* | downloaded masm32v6.zip from the URL above (later versions are probably okay too,
although there is a slight chance that the installation will be different.

* | double-clicked on the masm32v6.zip file (which runs WinZip on my system).

* | choose to extract "install.exe". | told WinZip to extract this file to C:\.

* | double-clicked on the "install.exe" icon and selected the "C:" drive in the window that popped
up. Then | hit the install button and waited while MASM32 extracted all the pertinent files.
This produced a directory called "MASM32". MASM32 is a powerful assembly language
development subsystem in its own right; but it uses the traditional MASM syntax rather than
the HLA syntax. So we’ll use MASM32 mainly for the assembler, linker, and library files.
MASMS32 also includes a simple editor/IDE and several other tools that may be useful to an
HLA programmer. Feel free to check this software out and see if it is useful to you. For now,
note that the executable files you will ultimately need are ML.EXE, ML.ERR, LINK.EXE, and
a couple of DLLs. You can find them in the MASM32\BIN subdirectory. Leave them there for
the time being. The MASM32\LIB directory also contains many Win32 library files you will
need. Again, leave them alone for the time being.

* Next, if you haven't already done so, download the HLA executables file from Webster at
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associated
with HLA from the HLA download page. The "Executables" is the only one you'll absolutely
need; however, you'll probably want to grab the documentation and examples files as well. If
you're curious, or you want some more example code, you can download the source listings to
the HLA Standard Library. If you'reeally curious (or masochistic), you can download the
HLA compiler source listings to (this it for casual browsing!).

* | downloaded the HLA1_ 32.zip file while writing this. Most likely, there is a much later ver
sion available as you're reading this. Be sure to get the latest version. | chose to download this
file to my "C:\" root directory.

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

» After downloading HLA1_32.zip to my C: drive, | double-clicked on the icon to run WinZip. |
selected "Extract" and told WinZip to extract all the files to my C:\ directory. This created an
"HLA" subdirectory in my root on C: with two subdirectories (include and lib) and two EXE
files (HLA.EXE and HLAPARSE.EXE. The HLA program is a "shell" program that runs the
HLA compiler (HLAPARSE.EXE), MASM (ML.EXE), the linker (LINK.EXE), and other
programs. You can think of HLA.EXE as the "HLA Compiler".

* Next, | created the following text file and named it "IHLA.BAT" (note that you may need to
change the default drive letters if you want to install HLA on a drive other than "C:"):

pat h=c:\ hl a; c: \ masn82\ bi n; %pat h%

set lib=c:\masnB2\lib;c:\hla\hlalib;%ib%

set include=c:\hla\include;c:\masnB2\i ncl ude; % ncl ude%
set hl ai nc=c:\hl a\incl ude

set hlalib=c:\hla\hlalib\hlalib.lib

* Be sure you've typed all the lines exactly as written or HLA will fail to run properly. You may
use any reasonable TEXT editor (e.g., NOTEPAD.EXE) to create this file. Do not use a word
processing program (since they generally don’t save their data as a TEXT file). Be sure the file
is named "IHLA.BAT" and not "IHLA.BAT.TXT" or some other variation.

* This batch file tells the system where to find all the files you will need when running HLA.
Advanced Win32 users should note that you can set all these environment variables up inside
the Windows system control panel in the "Advanced->Environment Variables" area. This is far
more convenient (ultimately) than using this batch file (for reasons you’ll soon see). However,
you can mess up you system if you don’t know what you're doing when playing with the sys
tem control panel, so only advanced users who've done this stuff before should attempt this.

* HLAis a Win32 Console Window program. To run HLA you must open up a consote Win
dow. Under Windows 2000, Microsoft has hidden this away in Start->Programs->Accesso
ries->Command Prompt. You might find it in another location. You can also start the
command prompt processor by selecting Start->Run and entering "cmd".

* Once you've got the command prompt, ("C:>" or something similar), execute the IHLA.BAT
file you've created by typing "IHLA" at the command line prompt. Hit the ENTER key to exe
cute the command.

* At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back-and fig
ure out what you've done wrong up to this point (it doesn’t hurt to start over from the begin
ning if you're lost).

* Thus far, you've verified that HLA.EXE is operational. Now try the following command:
"ML /?" This should run the Microsoft Macro Assembler (MASM) and display the help
screen. You can ignore the information that appears; you will probably never need to know
this stuff.

* Next, let’s verify the correct operation of the linker. Type "link /?" and verify that the linker
program runs. Again, you can ignore the help screen that appears. You don’t need to know
about this stuff.

* Nowit's time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA (we
will revisit this program a little later in this chapter, don’t worry about what it means just yet).
Enter it into a text editor and save it using the filename "HW.HLA":

program Hel | oVr | d;
#incl ude("stdlib.hhf")
begi n Hel | oVWorl d;
stdout.put("Hello, Wrld of Assenbly Language", nl);

end Hel | oVorl d;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel3

Chapter Two Volume 1

Pagel4

* Make sure you're in the same directory containing the HW.HLA file and type the following
command at the "C:>" prompt: "HLA -v HW". The "-v" option tells HLA to produce VER
BOSE output during compilation. This is helpful for determining what went wrong if the sys
tem fails somewhere along the line. This command should produce the following output:

HLA (H gh Level Assenbl er)
Witten by Randall Hyde and rel eased to the public donain.
Version Version 1.32 build 4904 (prototype)

Files:
1. hwhla

Conpi ling "hw hla" to "hw asnt
Assenbling hwasmvia "m /c /coff /C hw asn¥

M crosoft (R Macro Assenbl er Version 6.14. 8444
Copyright (C Mcrosoft Corp 1981-1997. Al rights reserved.

Assenbl i ng: hw. asm
Linking via "link -subsystem consol e /heap: 0x1000000, 0x1000000
/ st ack: 0x1000000, 0x1000000 / BASE: 0x3000000 / machi ne: 1 X86 -entry: ?HLAMVEi n @w. | i nk
-out: hw exe kernel 32.1ib user32.1ib c:\hla\hlalib\hlalib.lib hw obj"
Mcrosoft (R Increnental Linker Version 5.12.8078
Copyright (C Mcrosoft Corp 1992-1998. Al rights reserved.

/section:.text, ER

/ section: readonly, R
/section:.edata, R

/ section:.data, RW

/ section:.bss, RW

e If you get all of this output, you're in business. You can run the “HW” program using the fol
lowing CLI (command line interpreter) command:

HW

* One thing to remember is that unless you set the environment variables permanently in the Sys
tem control panel, you will have to run the IHLA.BAT file every time you open up a nhew com
mand prompt window. Since this is a pain, here are some instructions I've taken from the
Internet that describe how to set up the environment variab@sTHIS AT YOUR OWN
RISK)

1) Open System Properties (Winkey-Break is a convenient shortcut) and go to Advanced tab, then
Environment Variables. Add "c:\hla" to the Path in SYSTEM VARIABLES, not in "User variables
for <your win2k login name>". Click OK, but keep the Environment Variables window open, we're

not done.
2) Look at the contents of ihla.bat (ABOVE):
3) In "User Variables for <your login name>", you must end up with each of these settings. For exam

ple, to create hlainc, you click the "New..." button, type "hlainc" as the name of the variable, and
type "c:\hla\include" as the Variable value (all without quotes of course). If there is already a path
set, and it already has some value, add this immediately to the end: ";c:\hla;%path%" and that will
preserve your existing User and System paths as well as adding c:\hla.

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

For example, suppose you opened up your User Variables for <login name> and it already said
"C:\Private

Files\PantiePix;c:\winnt\system32;c:\winnt;c:\winnt\System32\Wbem;d:\lcc\bin;D:\PROGRA~1\U
LTRAE~1;D:\4NT300;C:\msoffice\Office;c:/hla",

you would click on Edit and type "C:\Private Files\PantiePix;c:\hla;%path%"

(Same advice for preserving existing lib and include settings)

4) Once you reboot the computer, you should be all set for "Hello world of assembly language"!
(without having to run the IHLA.BAT file.)

Installing HLA is a complex and slightly involved process. Unfortunately, this is necessary because |
don’'t have the rights to distribute MASM, LINK, and other Microsoft files. Fortunately, HUTCH has col-
lected all of these files together so they are easy to download. If you are concerned about possible legal
issues with the download, you may legally download MASM and LINK from Microsoft's site. A link on
Webster (at the URL above) describes how to do this. At the time this was being written, work was progress-
ing on HLA to produce TASM compatible output and plans were in the works to produce NASM and Gas
versions as well. However, you will still have to obtain the Microsoft library files from some source if you
intend to produce a Win32 application. Versions of HLA may appear for other Operating Systems as well.
Check out Webster to see if any progress has been made in this direction.

The most common two problems people have running HLA involve the location of the Win32 library
files and the choice of linker. During the linking phase, HLA (well, link.exe actually) requires the
kernel32.lib, user32.lib, and gdi32.lib library files. These must be present in the pathname(s) specified by
the LIB environment variable. If, during the linker phase, HLA complains about missing object modules,
make sure that the LIB path specifies the directory containing these files. If you're a MS VC++ user, instal-
lation of VC++ should have set up the LIB path for you. If not, then locate these files (they are part of the
MASMS32 distribution) and copy them to the HLA\HLALIB directory (note that the ihla.bat file includes
c:\hla\hlalib as part of the LIB path).

Another common problem with running HLA is the use of the wrong link.exe program. Microsoft has
distributed several different versions of link.exe; in particular, there are 16-bit linkers and 32-bit linkers.
You must use a 32-bit segmented linker with HLA. If you get complaints about "stack size exceeded" or
other errors during the linker phase, this is a good indication that you're using a 16-bit version of the linker.
Obtain and use a 32-bit version and things will work. Don't forget that the 32-bit linker must appear in the
execution path (specified by the PATH environment variable) before the 16-bit linker.

222

Installation Under Linux

HLA is not a stand alone program. It is a compiler that translates HLA source code wvarkevel
assembly language? separate assemblauch as Gas (as), then completes the processing ofvthlisviel
intermediate code to produce an object colde fFinally you must link the object code output from the
assembler using a liek program. Typically you will link the object code produced by one or more HLA
source fies with theHLA Standard Library (hlalita). Most of this actity takes place transparently when
ever you ask HLA to compile your HLA sourcéefis). Havever, for the whole process to run smoothlgu
must hae installed HLA and all the supportes correctly This section will discuss loto set up HLA on
your system.

First, you will need an HLA distriltion for Linux. The latest grsion of HLA is alvays &ailable on
Webster at http://webstes.ucredu. You should go there and wnoload the latestersion if you do not
already possess it.

As noted earlierHLA is not a stand alone assembl&he HLA package contains the HLA compjler
the HLA Standard Libraryand a set of includeldis for the HLA Standard Librarylf you write an HLA
program with just this code, HLA will produce an "ASMefand then stopTo produce anxecutable fe

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel5

Chapter Two

Pagel6

Volume 1

you will need GNUS as and Id programs (these come with lainux distritution that supports compiling
C/C++ programs). Note that HLA onlyorks with Gas v2.10 or latefThe Gas assembler is part of the
Binutils package. If you dohhave version 2.10 or latedovnload an appropriate binutils package from the
internet. HLA will generate errors when it attempts to assemble its output vieogation of the as (Gas)
executable if you do’have Gas v2.10 or later installed in your system.

Here are the steps | went through to install HLA on my Linux system:

First, if you haven't already done so, download the HLA executables file from Webster at
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associated
with HLA from the HLA download page. The "Linux Executables" is the only one you'll
absolutely need; however, you'll probably want to grab the documentation and examples files
as well. If you're curious, or you want some more example code, you can download the source
listings to the HLA Standard Library. If you'really curious (or masochistic), you can dewn
load the HLA compiler source listings to (thisniat for casual browsing!).
| downloaded the HLA1_39.tar.gz file while writing this. Most likely, there is a much later
version available as you're reading this. Be sure to get the latest version. | chose to download
this file to my root directory; you can put the file whereever you like, though this documenta
tion assumes that all HLA files wind up in the "/usr/hla/..." directory tree. If you do not already
have a “/usr/hla” subdirectory, you can create one with the “mkdir” command (it's best to do
this using the “root” or “superuser” account; if you do not have superuser priviledges, you
should have your system administrator do this for you.
After downloading HLA1 39.tar.gz to my root directory, | executed the following shel com
mand: "gzip -d HLA1_39.tar.gz". Once decompression was complete, | extracted the individ
ual files using the command "tar xvf HLA1_39.tar". This extracted a couple of executable files
("hla" and "hlaparse™) along with two subdirectories (include and hlalib). The HLA program
is a "shell" program that runs the HLA compiler (hlaparse), Gas (as), the linker (Id), and other
programs. You can think of “hla” as the "HLA Compiler". It would be a real good idea, at this
point, to set the permissions on "hla" and "hlaparse" so that everyone can read and execute
them. You should also set read and execute permissions on the two subdirectories and read
permissions on all the files within the directories (if this isn’t the default state). Do a "man
chmod" from the Linux command-line if you don’t know how to change permissions.
Next, (logged in as a plain user rather than root or the super-user), | edited the ".bashrc" file in
my home directory (“/home/rhyde" in my particular case, this will probably be different for
you). | found the line that defined the "path" variable, it originally looked like this on my sys
tem

"PATH=$DBROOT/bin:$DBROOT/pgm:$PATH"
| edited this line to add the path to the HLA directory, producing the following:

"PATH=$DBROOT/bin:$DBROOT/pgm:/usr/hla:$PATH"
Without this modification, Linux will probably not find HLA when you attempt to execute it
unless you type a full path (e.g., "/usr/hla/hla") when running the program. Since this is a pain,
you'll definitely want to add "/usr/hla" to your path.
Next, | added the following four lines to ".bashrc" (note that Linux filenames beginning with a
period don’t normally show up in directory listings unless you supply the "-a" option to Is):

hlalib=/usr/hla/hlalib/hlalib.a

export hlalib

hlainc=/usr/hla/include

export hlainc
These four lines define (and export) environment variables that HLA needs during compilation.
Without these environment variables, HLA will probably complain about not being able to find
include files, or the linker (Id) will complain about strange undefined symbols when you
attempt to compile your programs.

After saving the ".bashrc" shell, you can tell Linux to make the changes to the system by using
the command:

source .bashrc

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

Note: this discussion only applies to users who run the BASH shell. If you are using a different
shell (like the C-Shell or the Korn Shell), then the directions for setting the path and environ
ment variables differs slightly. Please see the documentation for your particular shell if you
don’t know how to do this. Also note that Linux does not normally display files whose name
begins with a period when you use the “Is” command; to see such files, use the “Is -a” shell
command.

e At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back-and fig
ure out what you've done wrong up to this point (it doesn'’t hurt to start over from the begin
ning if you're lost).

* Now it's time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA
(we'll discuss this program in detail a little later in this chapter). Enter it into a text editor and
save it using the filename "hw.hla":

program Hel | oVWr | d;
#incl ude("stdlib.hhf")
begi n Hel | oWorl d;

stdout. put("Hello, Wrld of Assenbly Language", nl);
end Hel | oVorl d;

* Make sure you're in the same directory containing the "hw.hla" file and type the following
command at the prompt: "hla -v hw". The "-v" option tells HLA to produce VERBOSE output
during compilation. This is helpful for determining what went wrong if the system fails some
where along the line. This command should produce the following output:

H.A (H gh Level Assenbler) Parser

Witten by Randall Hyde and rel eased to the public donain.
Version Version 1.39 build 6845 (prototype)

-t active

File: t.hla

Conpiling "t.hla" to "t.asnm

H.LA (H gh Level Assenbler)

Copyright 1999, by Randall Hyde, all rights reserved.
Version Version 1.39 build 6845 (prototype)

ELF out put

Usi ng GAS assenbl er

GAS out put

-test active

Files:
1. t.hla

Conpiling "t.hla" to 't.asm
using command |ine [hlaparse -v -sg -test "t.hla"]

Assenbling "t.asmf via[as -ot.o "t.asni]
Linking via [Id -0 "t" "t.o" "/usr/hla/hlalib/hlalib.a"]

Installing HLA is a compbe and slightly ivolved process; though talheart, it§ a lot simpler to install
HLA under Linux thanwindows! (See the prgous section if you need proof.Yersions of HLA may
appear for other operating systemsy(ie Windows and Linux) as well. Check oWebster to see if gn
progress has been made in this direction. Notrauwnique thing about HLA: Carefully written (console)
applications will compile and run on all supported operating systems without chiriges unheard of for

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel7

Chapter Two Volume 1

assembly language! So if you are using multiple operating systems supported by HUAprpdably
want to devnload fles for all supported OSes.

Note: to run the Hellowd program, a Linux userauld type “hw” (or possibly “./hw”) at the com
mand line prompt.

2.2.3

Pagel8

Installing “Art of Assembly” Related Files

Although HLA is relatvely flexible about where you put it on your system, thid ssssumes youé
installed HLA in the “hla” directory on your C: &8 under aVin32 operating system or in “/usr/hla” under
Linux. This text also assumes the standard directory placement for the Hdsiiihich has the folleing
layout

HLA directory

. AoA directory

. Doc directory

. Examples directory
. hlalib directory

. hlalibsrc directory

. include directory

. Tests directory

The “Art of Assembly” (AoA) software distribution has the following directory tree structure:
* AOA directory

. volumel

. ch01 directory
. ch02 directory
. etc.

. volume2

. ch01 directory
. ch02 directory
. etc.

. etc.

The mainHLA directory contains thexecutable code for the compilérhis consists of tw files,
HLA.EXE/hla and HLARRRSE.EXE/hlaparse (Wdows/Linux). These tvo programs must be in the eur
rent ececution path in order to run the compilédnderwWindows, it wouldn't hurt to put the mbee, ml.err
link.exe, mspdbXO0.dll (x=5, 6, or greater), and msvcrt.disfiin this directory as well. Under Linux, the
“as” and “ld” programs are already in theeeution path, assuming your Linux system supports C/C++
development.

TheDocdirectory contains reference material for HLA in PDF and HTML formats. If yea haop
of AdobeAcrobat Readeryou will probably vant to read the PDFevsions since tlyeare much nicer than
the HTML versions.These documents contain the most up-to-date information about the HLA language;
you should consult them if youV®a question about the HLA language or the HLA Standard LikGaamy
erally, material in this documentation supersedes information appearing irxttsste the HLA document
is electronic and is probably more up to date.

The Exampledirectory contains a lge set of HLA programs that demonstradeious features in the
HLA language. If you hae a question about an HLA feature, you can probabty dn &le program
that demonstrates that feature in Exeamplesdirectory Such &les proide invaluable insight that is
often superior to a written description of the feature. Note that some of these programs may becpecifi
Windows or Linux, not all will compile and run under either operating system.

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

Thehlalib directory contains the object code for the HLA Standard Libfaryou become more com
petent with HLA, you may @ant to tale a look at ha HLA implements @rious library functions by cheek
ing out the library source code in thialibsrc subdirectory

Theincludedirectory contains the HLA Standard Library includediThese speciallés (that end with
a “.hhf" sufiix, for “HLA Header File”) are needed during assembly to/jgi® prototype and other informa
tion to your programThe example programs in this chapter all include the HLA heatietdidlib.hhf” that,
in turn, includes all the other HLA headdeéi in the standard library

The Testsdirectory contains arious test fes that test the correct operation of the HLA system. HLA
includes these s as part of the distution package because yhprovide additional gamples of HLA
coding.

TheAoAdirectory contains the code speciid this t&tbook.This directory contains all the source code
to the (complete) programs appearing in this. tik also contains the programs appearing in the Laboratory
Exercises section of each chapiénerefore, this directory isevy important to you.Within this subdirec
tory, the information is further dided up by wlume and chaptefThe material for Chapter One appears in
the “ch01” subdirectory of the tlumel” directory in thé&oA directory tree, the material for Chapievo
appears in the “ch02” subdirectory of theliwmel” directoryetc..

2.3 The Anatomy of an HLA Program

An HLA program typically taks the follaving form:

program.pgn D ; The declarations section
is where you declare constants,

Decl ar ati ons — types, variables, procedures, and
other olpects in an HLAprogram.

These identifiers
specify the name
of the program.
They must all be
the same identifier

The Statements section is where
you place the executable statements
for your main program.

St at enent s

end [pgnm D ;

PROGRAM, BEGIN, and END are HLA reserved words that delineate the program. Note the
placement of the semicolons in this program.

Figure 2.1 Basic HLA Program Layout

The pgmIDin the template abe is a usedefined program identir. You must pick an appropriate,
descriptve, name for your program. In particylpgmIDwould be a horrible choice for ameal program. If
you are writing programs as part of a course assignment, your instructor will proba&yypgithe name to
use for your main program. If you are writing yowroHLA program, you will hee to choose this hame.

Identifiers in HLA are ery similar to identifers in most high lesl languages. HLA identdrs may
begin with an underscore or an alphabetic charaated may be follwed by zero or more alphanumeric or
underscore characters. HlsAdentifers arecase neutl. This means that the idenéfs are case senséi
insofar as you must aiays spell an identdér exactly the same &y in your program (e&n with respect to
upper and laver case). Haever, unlike other case sensi languages, Ik C/C++, you may not declaredw
identifiers in the program whose naméd@tié only by the case of alphabetic characters appearing in an iden
tifier. Case neutrality enforces the good programming styleaayal spelling your namesactly the same

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel9

Chapter Two Volume 1

way (with respect to case) andvae declaring tw identifiers whose only diérence is the case of certain
alphabetic characters.

A traditional frst program people write, popularized by K&RThe C Programming Language” is the
“Hello World” program.This program mads an gcellent concretexample for someone who is learning a
new language. Herg'what the “HelldNorld” program looks like in HLA:

program hel | oVr | d;
#include(“stdlib.hhf”);

begi n hel | oWorl d;
stdout.put(“Hello, Wrld of Assenbly Language”, nl);

end hel | oWirl d;

Program 2.1 The Hello World Program

The#include statement in this program tells the HLA compiler to include a set of declarations from the
stdlib.hhf (standard libratyHLA Header File)Among other things, thislé& contains the declaration of the
stdout.putcode that this program uses.

The stdout.putstatement is the “print” statement for the HLA languageu use it to write data to the
standard output dé&e (generally the consol€lo aryone familiar with I/O statements in a highvéd lan
guage, it should be glous that this statement prints the phrase “H&llorld of Assembly LanguageThe
nl appearing at the end of this statement is a constant, alsedlii ‘stdlib.hhf”, that corresponds to the
newline sequence.

Note that semicolons folothe program, BEGINstdout.putand END statemeri'tsTechnicaIIy speak
ing, a semicolon is not necessary after the #INCLUDE statement. It is possible to create ilesluldat fi
generate an error if a semicolon fel®the #INCLUDE statement, so you maginw to get in the habit of
not putting a semicolon here (notewmwer, that the HLA standard library includée alvays allav a sen
colon after the corresponding #INCLUDE statement).

The #INCLUDE is your fist introduction to HLA declaration¥he #INCLUDE itself isrt actually a
declaration, bt it does tell the HLA compiler to substitute thle fistdlib.hhf” in place of the #INCLUDE
directive, thus inserting seral declarations at this point in your program. Most HLA programs you will
write will need to include at least some of the HLA Standard Library heddsr(fstdlibhhf” actually
includes all the standard library defions into your program; for morefifient compiles, you might ant
to be more selecste about which fes you includeYou will see hav to do this in a later chapter).

Compiling this program producescansoleapplication Running this program in a command windo
prints the speciéid string and then control returns back to the command line interpresée(lon Unix ter
minology).

Note that HLA is a free-format languagéerefore, you may split statement across multiple lines (just
like high level languages) if this helps to nekour programs more readableor Example, thestdout.put
statement in the Hellowvld program could also be written as falk

st dout . put

(
“Hell o, World of Assenbly Language”,
nl

)

1. Technically, from a language design point of view, these are not all statements. However, this chapter will not make that
distinction.

Page20 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

Another item verth noting, since yolil'see it cropping up inxample code throughout thiscteis that
HLA automatically concatenatesyaadjacent string constants ihdis in your sourcelé. Therefore, the
statement abe is also equalent to:

st dout . put

(
“Hello, *

“Worl d of Assenbly Language”,
nl

)

Indeed, “nl” (the neline) is really nothing more than a string constant, so (technically) the comma
between thal and the preceding string ismiecessaryYou'll often see the abe written as:

stdout.put(“Hello, Wrld of Assenbly Language” nl);

Notice the lack of a comma between the string constant and nl; this turns out to be pegtddtiyHeA,

though it only applies to certain symbol string constants; you may not, in general, drop the comma. The
chapter on Strings, later in this text, will explain in detail how this works. This discussion appears here
because you'll probably see this “trick” employed by sample code prior to the formal discussion inthe chap

ter on Strings.

2.4 Some Basic HLA Data Declarations

HLA provides a wide ariety of constant, type, and data declaration statements. Later chapters will
cover the declaration section in more detail i's important to kne how to declare a & simple \ariables
in an HLA program.

HLA predefines three diérent signed inger typesint8, int16, andint32, corresponding to eight-bit
(one byte) signed ingers, 16-bit (tw byte) signed intgers, and 32-bit (four byte) signed igées respec
tivelyz. Typical variable declarations occur in the Hlistatic variable sectiorA typical set of ariable dee
larations taks the folleving form

"static" is the keyword that begins

stati c _ the variable declaration section.
8 i16. and i32 18: int8; o .
I, 116, and | i 16° i nt 16: —int8, int16, and int32 are the names
?ﬁg ;[/gerigt?lrgsezo i 32: b nt 323 of the data types for each declaration

declare here.

Figure 2.2 Static Variable Declarations

Those who areamiliar with the Rscal language should be comfortable with this declaration syntax.
This example demonstratesWwdo declare three separate g#es,i8, i16,andi32. Of course, in a real pro
gram you should useaviable names that are a little more desargptVhile names lik “i8” and “i32”
describe the type of the object, yrao not describe &' purposeVariable names should describe the purpose
of the object.

In the SRATIC declaration sectigryou can also ge a \ariable an initial glue that the operating system
will assign to the ariable when it loads the program into memadilye folloving figure demonstrates the
syntax for this:

2. A discussion of bits and bytes will appear in the next chapter if you are unfamiliar with these terms.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page?l

Chapter Two Volume 1

static
i8 int8 - 8 The operand after the constant
Lo -1 assignment operator must be
116: intl6 := 1600; a constant whose type is
The constant assignment 132: int32 := -320000; compatible with the variable

operator, ":=" tells HLA / you are initializing
that you wish to initialize

the specified variable with
an initial value.

Figure 2.3 Static Variable Initialization

It is important to realize that themression follaing the assignment operator (“:=") must be a constant
expressionYou cannot assign thelues of other ariables within a SATIC variable declaration.

Those &miliar with other high leel languages (especiallyagtal) should note that you may only
declare one ariable per statemerithat is, HLA does not all®@ a comma delimited list ofariable names
followed by a colon and a type idergifiEach wariable declaration consists of a single idestifa colon, a
type ID, and a semicolon.

Here is a simple HLA program that demonstrates the usariafioles within an HLA program:

Pr ogr am DenoVar s;
#include(“stdlib.hhf”);

static
| ni t Deno: int32 .= 5;
Not I nitialized: int32;
begi n DenoVars;
// Display the value of the pre-initialized variabl e:
stdout.put(“InitDeno’s value is “, InitDermo, nl);
I/ Input an integer value fromthe user and display that val ue:
stdout.put(“Enter an integer value: “);
stdin.get(Notlnitialized);

stdout.put(“You entered: “, Notlnitialized, nl);

end DenoVars;

Program 2.2 Variable Declaration and Use

In addition to SATIC variable declarations, thisample introduces threeweconcepts. First, thetd
out.putstatement allws multiple parameters. If you specify an gee \alue, stdout.putwill convert that
value to the string representation of thatgetés value on outputThe second e feature this sample pro
gram introduces is th&din.get statementThis statement reads alue from the standard inputwee (usu
ally the leyboard), cowmerts the walue to an intger, and stores the irger \alue into theNotlnitialized
variable. Finallythis program also introduces the syntax for (one form of) HLA comniBmesHLA com
piler ignores all tet from the “//” sequence to the end of the current liffease &miliar with C++ and Del
phi should recognize these comments.

Page22 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

2.5

Boolean Values

HLA and the HLA Standard Library pvaes limited support for boolean object¥ou can declare
boolean wriables, use boolean literal constants, use bookegables in booleanxgressions (e.g., in an IF
statement), and you can print tredues of booleanariables.

Boolean literal constants consist of th@fredefned identiferstrue andfalse. Internally HLA repre
sents the alue true using the numerialue one; HLA represental§e using thealue zero. Most programs
treat zero asalse and aything else as true, so HLArepresentations forue andfalseshould pree sufi-
cient.

To declare a boolearasiable, you use thgooleandata type. HLA uses a single byte (the least amount
of memory it can allocate) to represent boolealnes. The follonving example demonstrates some typical
declarations:

static

Bool Var : bool ean;

Hasd ass: bool ean : = fal se;
Isdear: bool ean : = true;

As you can see in thixample, you may declare initialized as well as uninitialized variables.

Since boolean variables are byte objects, you can manipulate them using eight-bit registers and any
instructions that operate directly on eight-bit values. Furthermore, as long as you ensure that your boolean
variables only contain zero and one (for false and true, respectively), you can use the 80x86 AND, OR,
XOR, and NOT instructions to manipulate these boolean values (we’ll describe these instructions a little
later).

You can print boolean values by making a call tostheut.putroutine, e.g.,
stdout. put (Bool Var)
This routine prints the % “true” or “false” depending upon the value of the boolean parameter (zero is

false, anything else is true). Note that the HLA Standard Library does not allow you to read boolean values
via stdin.get

2.6

Character Values

HLA lets you declare one-by#®&SCIl character objects using tlekar data type You may initialize
character ariables with a literal charactealue by surrounding the character with a pair of apostrophes
The folloving example demonstratesWwdo declare and initialize charactariables in HLA:

static
c: char;
LetterA char := ‘A

You can print character variables using stabout.putroutine. We'll return to the subject of character-con
stants a little later.

2.7

An Introduction to the Intel 80x86 CPU Family

Thus fr, youve seen a couple of HLA programs that will actually compile and ruwelés, all the
statements utilized to this pointieabeen either data declarations or calls to HLA Standard Library routines.
There hasit’been ap real assembly language up to this point. Before we can progregarémer and learn

Beta Draft - Do not distribute © 2001, By Randall Hyde Page23

Chapter Two Volume 1

some real assembly language, a detour is necebsannless you understand the basic structure of the Intel
80x86 CPU amily, the machine instructions will seem mysterious indeed.

The Intel CPU &mily is generally classéd as avon NeumanrArchitectue Madine Von Neumann
computer systems contain three matilding blocks: thecentral processing unif{CPU), memory and
input/output deices(lI/O). These three components are connected together usisgstieen bs. The follow-
ing block diagram shws this relationship:

I1/0O Devices

Figure 2.4 Von Neumann Computer System Block Diagram

Memory and 1/0 déces will be the subjects of later chapters; fownlet’s tale a look inside the CPU
portion of the computer system, at least at the components that are visible to the assembly language pro
grammer

The most prominent items within the CPU arertiggisters.The Intel CPU rgisters can be brek davn
into four catgories:general purpose gésters, special purpose application accessilglisters, sgment rg-
isters, and special purposerkel mode rgistersThis tect will not consider the last twsets of rgistersThe
segment rgisters are not used much in modern 32-bit operating systema\edawvs, BeOS, and Linux);
since this tet is geared around programs written for 32-bit operating systems, there is little need to discuss
the sgment rgisters.The special purposesknel mode rgisters are intended for use by people who write
operating systems, detygers, and other systenvéé tools. Such softare construction is well lgend the
scope of this ta, so once agjn there is little need to discuss the special purpeseekmode rgisters.

The 80x86 (Intel dmily) CPUs pruide seeral general purposegisters for application us@hese
include eight 32-bit misters that hae the follaving names

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The “E” prefix on each name stands éatended This prefix differentiates the 32-bit registers from the eight
16-bit registers that have the following names:

AX, BX, CX, DX, SI, DI, BP, and SP
Finally, the 80x86 CPUs provide eight 8-bit registers that have the following names:
AL, AH, BL, BH, CL, CH, DL, and DH

Unfortunately, these are not all separate registers. That is, the 80x86 does not provide 24 independent
registers. Instead, the 80x86 overlays the 32-bit registers with the 16-bit registers and it overlays the 16-bit
registers with the 8-bit registers. The following diagram shows this relationship:

Page24 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

Si

M
im

EBX B% EDI

ECX

CX

EDX ESP

DX

Figure 2.5 80x86 (Intel CPU) General Purpose Registers

H

The most important thing to note about the general purpgssees is that theare not independent.
Modifying one rgister will modify at least one othergister and may modify as maas three other gis-
ters. or example, modiftation of the EAX rgister may ery well modify theAL, AH, andAX registers as
well. This fact cannot bew@remphasized heré.very common mistakin programs written by gening
assembly language programmers @ister \alue corruption because the programmer did not fully under
stand the rami€ations of the abe diagram.

The EFLAGS rayister is a 32-bit igister that encapsulatessseal single-bit boolean (truafse) alues.
Most of the bits in the EFL&s reayister are either resezd for kernel mode (operating system) functions, or
are of little interest to the application programnigight of these bitsof flags) are of interest to application
programmers writing assembly language prografhese are theverflow, direction, interrupt disabfe
sign, zero, auxiliary carryarity, and carry figs.The folloving diagram shes their layout within the loer
16-bits of the EFLA&S ragister

3. Application programs cannot modify the interrupt flag, but we’ll look at this flag later in this text, hence the discussion of
this flag here.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page25

Chapter Two Volume 1

15 0

Overflow

Direction Not very

Interrupt interesting to
application
programmers

Sign

Zero

Auxiliary Carry

Parity

Carry

Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

Of the eight fhgs that are usable by application programmers, fags fin particular arexaemely
valuable: theoverflow, carry, sign, andzero fags. Collectiely, we will call these four #igs thecondition
codeé. The state of theseafljs (booleanariables) will let you test the results of yieis computations and
allow you to malke decisions in your programsor~example, after comparing twalues, the state of the
condition code #gs will tell you if one &lue is less than, equal to, or greater than a se@bne. Vhe 80x86
CPUs preide special machine instructions that let you test #gsflalone or inarious combinations.

The last rgister of interest is th&IP (instruction pointer) gaster This 32-bit rgister contains the
memory addessof the n&t machine instruction toxecute.Although you will manipulate this gister
directly in your programs, the instructions that modify @ue treat this gister as an implicit operand.
Therefore, you will not need to remember much about thister since the 80x86 instruction sdeefively
hides it from you.

One importantdct that comes as a surprise to those just learning assembly language is that almost all
calculations on the 80x86 CPU mustadlve a rgister For example, to add tev (memory) wariables
togethey storing the sum into a third location, you must load one of the memory operands gisbes aeld
the second operand to thalwe in the rgister and then store thegister avay in the destination memory
location. Reisters are aniddlemanin nearly &ery calculationTherefore, rgisters are @ry important in
80x86 assembly language programs.

Another thing you should bevare of is that although the general purpogésters hae the name “gen
eral purpose” you should not infer that you can useregister for ay purposeThe SP/ESP gister for
example, has aery special purpose (@'thestak pointe)) that efectively prevents you from using it for gn
other purpose. Lidwise, the BP/EBP gister has a special purpose that limits its usefulness as a general
purpose rgister All the 80x86 rgisters hge their avn special purposes that limit their use in certain-con
texts. For the time being, you should simplycéd the use of the ESP and EBRisters for generic calcula
tions and kep in mind that the remainingisters are not completely interchangeable in your programs.

2.8 Some Basic Machine Instructions

The 80x86 CPUs prxide just wer a hundred to mgnthousands of diérent machine instructions,
depending on he you defne a machine instruction. En at the lov end of the count (greater than 100), it
appears as though there aaetbo mag machine instructions to learn in a short period of tinegtunately

4. Technically the parity flag is also a condition code, but we will not use that flag in this text.

Page26 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

you dont need to knw all the machine instructions. ladt, most assembly language programs probably use
around 30 dferent machine instructionsindeed, you can certainly writeveeal meaningful programs with
only a small handful of machine instructiofifie purpose of this section is to pide a small handful of
machine instructions so you can start writing simple HLA assembly language programwaight a

Without question, thOV instruction is the most often-used assembly language statement. In a typical
program, apwhere from 25-40% of the instructions are typically WlDstructions As its name suggests,
this instruction mees data from one location to anofhdihe HLA syntax for this instruction is

mov(source_operandlestination_operany

Thesouice_opeandcan be a mgister a memory @riable, or a constanthe destination_opend may
be a rgister or a memoryariable.Technically the 80x86 instruction set does notvaltmth operands to be
memory \ariables; HLA, haever, will automatically translate a M@Qinstruction with two 16- or 32-bit
memory operands into a pair of instructions that willycthe data from one location to anothi@ra high
level language lik Rascal or C/C++, the M@instruction is roughly equalent to the follwing assignment
statement:

destination_opend = souce_opeand ;

Perhaps the major restriction on the WiDstructions operands is that thenust both be the same size.
That is, you can me data between tweight-bit objects, between vl 6-bit objects, or between dvd2-bit
objects; you may not, n@ver, mix the sizes of the operand#$e following table lists all the al combina
tions:

Table 1: Legal 80x86 MOV Instruction Operands

Source Destination
Regg® Regg
Regg Memg
Memg Regg

constarit Regg
constant Memg

Regse Regse
Regs6 Memy g

Memyg Regse

constant Reyi6
constant Memyg

Regs; Regs,

5. Different programs may use a different set of 30 instructions, but few programs use more than 30 distinct instructions.
6. Technically, MOV actually copies data from one location to another. It does not destroy the original data in the source
operand. Perhaps a better name for this instruction should have been COPY. Alas, it’s too late to change it now.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page27

Chapter Two Volume 1

Table 1: Legal 80x86 MOV Instruction Operands

Regs; Memg,
Memg, Regs;
constant Regs,
constant Memg,

a. The suffix denotes the size of the register or memory location.
b. The constant must be small enough to fit in the specified destination
operand

You should study this table carefulMost of the general purpose 80x86 instructions use this same syn
tax. Note that in addition to the forms abpthe HLA MO/ instruction lets you specify wvmemory oper
ands as the source and destinationwvéter, this special translation that HLA pides only applies to the
MOV instruction; it does not generalize to the other instructions.

The 80x86ADD and SUB instructions let you add and subtract teperandsTheir syntax is nearly
identical to the M instruction:

add(source_operandestination_operangt
sub(source_operandiestination_operanjt

The ADD and SUB operands must take the same form as the MOV instruction, listed in the talfle above
The ADD instruction does the following:

destination_opend= destination_operand + source_operand
destination_opend += source_operand// For those who prefer C syntax
Similarly, the SUB instruction does the calculation:
destination_opend= destination_operand - source_opergnd
destination_opemnd = source_operang // For C fans.

With nothing more than these three instructions, plus the HLA control structures that the next section dis
cusses, you can actually write some sophisticated programs. Here’s a sample HLA program that demon
strates these three instructions:

pr ogr am DenoMVaddSUB;

#include(“stdlib.hhf”);

static
i 8: int8 = -8;
i 16: intl6 = -16;
i 32: int32 = -32;

begi n DenoMOvaddSUB;

[l First, print the initial values
/1 of our variabl es.

st dout . put
(

nl,

7. Remembertthough, that ADD and SUB do not support memory-to-memory operations.

Page28

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

“Initialized values: i8=", i8,
‘. i1e=", 116,
“,132=", 132,

nl

)

// Conpute the absolute val ue of the
/1l three different variables and

[l print the result.

/! Note, since all the nunbers are
I/ negative, we have to negate them
/1 Wsing only the MOV, ADD, and SUB
I/ instruction, we can negate a val ue
/1 by subtracting it fromzero.

nmov(0, al); /1 Conpute i8 := -i8;
sub(18, al);

nov(al, i8);

nmov(0, ax); /1 Conpute i16 := -i16;
sub(116, ax);

nmov(ax, 116);

nov(0, eax); [// Conpute i32 := -i32;

sub(132, eax);
nov(eax, i32);

/1 Display the absol ute val ues:

st dout . put
(
nl,
“After negation: i8=", i8,
‘. 116=", 116,
‘o 132=", 132,
nl
)

/1 Denonstrate ADD and constant -t o- menory
/'l operations:

add(32323200, i32);
stdout.put(nl, “After ADD i32=", i32, nl);

end DenoMOVaddSUB;

Program 2.3 Demonstration of MOV, ADD, and SUB Instructions

2.9

Some Basic HLA Control Structures

The MOV, ADD, and SUB instructions, whilealuable, aren’suficient to let you write meaningful pro

Beta Draft - Do not distribute © 2001, By Randall Hyde

gramsYou will need to complement these instructions with the ability tcendakisions and create loops in
your HLA programs before you can writey#imng other than a trial program. HLA preides sgeral high
level control structures that areery similar to control structures found in higlvde languages. These

Page29

Chapter Two Volume 1

includeIF.THEN..ELSEIF.ELSE.ENDIF, WHILE..ENDWHILE, REPEA..UNTIL, and so on. By learn
ing these statements you will be armed and ready to write some real programs.

Before discussing these highvéd control structures, &' important to point out that these are not real
80x86 assembly language statements. HLA compiles these statements into a sequence of one or more real
assembly language statements for you. Later in thisyteu’ll learn hav HLA compiles the statements and
you'll learn hav to write pure assembly language code that dbese’ them. Haever, you'll need to learn
mary new concepts before you get to that point, solivetick with these high leel language statements for
now since you'e probably alreadyamiliar with statements likthese from youngosure to high kel lan
guages.

Another importantdct to mention is that HLA high level control structures anmgot as high lgel as
they first appearThe purpose behind HL#&high level control structures is to let you start writing assembly
language programs as quickly as possible, not to letwyaid the use of real assembly language altogether
You will soon discwger that these statements/eaome seere restrictions associated with them and you will
quickly outgrav their capabilities (at least the restricted forms appearing in this sedts)s intentional.
Once you reach a certairvé of comfort with HLAs high level control structures and decide you need more
power than thg have to ofer, it's time to m@e on and learn the real 80x86 instructions behind these state
ments.

2.9.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (trueatse) epression to control theixecution. Exam
ples include the IPNVHILE, and REPEA..UNTIL statementsThe syntax for these boolearpeessions
represents the greatest limitation of the HLA higleleontrol structures-his is one area where yowanfil-
iarity with a high leel language will wrk aguinst you — yodl want to use the same booleapessions
you use in a high lel language and HLA only supports some basic forms.

HLA boolean a&pressions alays tale the follaving form&:
flag_specification
Iflag_specification
register
Iregister
Boolean_variable
'Boolean_variable
mem_reg relop mem_reg_const
register in LowConst..HiConst
register not in LowConst..HiConst

A flag_specifcationmay be one of the foNeing symbols:

e @c carry: True if the carry is set (1), false if the carry is clear (0).
e (@nc no carry: True if the carry is clear (0), false if the carry is set (1).
e @z zero: True if the zero flag is set, false if it is clear.

e @nz not zero: True if the zero flag is clear, false if it is set.

e @o overflow: True if the overflow flag is set, false if it is clear.

e (@no no overflow: True if the overflow flag is clear, false if it is set.

e @s sign: True if the sign flag is set, false if it is clear.

e @ns no sign: True if the sign flag is clear, false if it is set.

8. Technically, there are a few more, advanced, forms, but you'll have to wait a few chapters before seeing these additional
formats.

Page30 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

The use of the dlg values in a boolean expression is somewhat advanced. You will begin to see how to use
these boolean expression operands in the next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expression
evaluates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zero
(true). Since HLA uses the values zero and one to represent false and true, respectively, the test works in an
intuitive fashion. Note that HLA requires that stand-alone variables be oboglean HLA rejects other
data types. If you ant to test some other typeadst zero/not zero, then use the general boobgaression
discussed ne.

The most general form of an HLA booleatpeession has tawvoperands and a relational operaidre
following table lists the gal combinations:

Table 2: Legal Boolean Expressions

Left Relational .
Operand Operator Right Operand
—0or ==
~ MemoryVariable,
MemoryVariable <>ori=
< Reagister
or
<= or
Register S
Constant
>=

Note that both operands cannot be memory operandactniffyou think of the Right Operand as the
source operand and the Left Operand as the destination operand, themdperands must be the same as
those allaved for theADD and SUB instructions.

Also like theADD and SUB instructions, the twoperands must be the same sizet is, thg must
both be eight-bit operands, thenust both be 16-bit operands, orytheust both be 32-bit operands. If the
Right Operand is a constantsitalue must be in the range that is compatible with the Left Operand.

There is one other issue of which you need toviere If the Left Operand is agister and the Right
Operand is a posite constant or anothergister HLA uses amunsignedcomparisonThe net chapter will
discuss the ramifations of this; for the time being, do not compargatiee \values in a rgister aginst a
constant or anothergister You may not get an intuie result.

TheIN andNOT IN operators let you test agister to see if it is within a spe@fl range. & example,
the pression “EAX in 2000..2099"valuates true if thealue in the EAX rgister is between 2000 and
2099 (inclusie). The NOT IN (two words) operator lets you check to see if thkig in a rgister is outside
the specid range. & example, AL not in ‘a’..z”” evaluates true if the character in thk register is not
a lower case alphabetic character

Here are somexamples of Igal boolean gpressions in HLA:
@c
Bool_var
al
ESI
EAX < EBX

Beta Draft - Do not distribute © 2001, By Randall Hyde Page3l

Chapter Two

EBX >5
i32<-2
i8>128
al<i8
eax in 1..100
chnotin‘a’’z’

Volume 1

2.9.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement

The HLA IF statement uses the fallmg syntax:

I f(expression) then

sequence
of one or
nore statenents

The elseif clause is optional. Zero or more elseif

el seif(expression) then clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
sequence / (or before the endif if there is no else clause).
of one or

nore statenents

el se
sequence The el I i tional. At t
e else clause is optional. most one
%r gngt gtr - \ else clause may appear within an if statement
and it must be the last clause before the
endif.
endi f;
Figure 2.7 HLA IF Statement Syntax

The pressions appearing in this statement mugt tade of the forms from the pieus section. If the
associated »@ression is true, the code after fIEN executes, otherwise control transfers to thgtne
ELSEIF or ELSE clause in the statement.

Since the ELSEIF and ELSE clauses are optional, an IF statement cailthéatorm of a single
IF.THEN clause, follwed by a sequence of statements, and a closing ENDIF clhesdolloving is an
example of just such a statement:

if(eax =0) then
stdout.put(“error: NUL value”, nl);

endif;

© 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

If, during program xecution, the xpression ealuates true, then the code betweenTtH&EN and the
ENDIF executes. If thexpression ealuates dlse, then the program skipgeo the code between th&lEN
and the ENDIF

Another common form of the IF statement has a single ELSE clBlusdolloving is an &le of an
IF statement with an optional ELSE:

if(eaex =0) then

stdout. put(“error: NJUL pointer encountered”, nl);
el se

stdout. put(“Pointer is valid’, nl);
endi f;

If the expression ealuates true, the code betweenThEN and the ELSExecutes; otherwise the code
between the ELSE and the ENDIF clausexcates.

You can create sophisticated decision-making logic by incorporating the ELSEIF clause into an IF state
ment. for example, if the CH rgister contains a charactealwe, you can select from a menu of items using
code like the follaving:

if(ch="a) then

stdout. put(“You selected the ‘@ nenu iteni, nl);
elseif(ch =‘b) then

stdout. put(“You selected the ‘b’ menu itent, nl);
elseif(ch =*c”) then

stdout. put(“You selected the ‘¢’ nenu itent, nl);
el se

stdout.put(“Error: illegal menu itemselection”, nl);
endi f;

Although this simple xample doest’demonstrate it, HLA does not require an ELSE clause at the end
of a sequence of ELSEIF clauseswdeer, when making multi-ay decisions, is alvays a good idea to
provide an ELSE clause just in case an error arisesn Ewou think its impossible for the ELSE clause to
execute, just kep in mind that future modifitions to the code could possiblyidl this assertion, so &'a
good idea to hae error reporting statementsilb into your code.

2.9.3 The WHILE..ENDWHILE Statement

TheWHILE statement uses the folling basic syntax:

Beta Draft - Do not distribute © 2001, By Randall Hyde Page33

Chapter Two Volume 1

The expression in the WHILE
statement has the same
restrictions as the |IF statement.

whi | e(expression) do
sequence

of one or
nor e statenents

Loop Body

endwhi | e;

Figure 2.8 HLA While Statement Syntax

This statementwaluates the booleaxgression. If it is &lse, control immediately transfers to thstfi
statement follwing the ENDWVHILE clause. If the &lue of the gpression is true, then contrallis through
to the body of the loopfter the loop body xecutes, control transfers back to the top of the loop where the
WHILE statement retests the loop contrgpeession.This process repeats until thepeession ealuates
false.

Note that thaVHILE loop, like its high lgel language siblings, tests for loop termination at the top of
the loop.Therefore, it is quite possible that the statements in the body of the loop wikeamotte (if the
expression is dlse when the coderdt executes theVHILE statement)Also note that the body of the
WHILE loop must, at some point, modify thalwe of the boolearxpression or an infite loop will result.
nov(O, i);
while(i <10) do

stdout.put(“i=", i, nl);
add(1, i);
endwhi | e;

2.9.4 The FOR..ENDFOR Statement

The HLA FOR loop ta&s the folleving general form:
for(Initial_Stnt; Term nation Expression, Post_Body Statenent) do

<< Loop Body >>
endf or;

This is eqwialent to the follawving WHILE statement;

Initial _Stnt;
whi l e(Term nation_expression) do

<< | oop_body >>
Post_Body St at enent ;
endwhi | e;

Initial_Stmtcan be ay single HLA/80x86 instruction. Generally this statement initializegester or
memory location (the loop counter) with zero or some other initialev Termination_e&pressionis an

Page34 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

HLA boolean &pression (same format thatHILE allows). This expression determines whether the loop
body will execute. The Post_Body Statememstecutes at the bottom of the loop (asvehan theWHILE
example abwe). This is a single HLA statement. Usually it is an instructioe ABD that modifes the
value of the loop controlariable.

The following gives a completexample:
for(nov(O, i); i < 10; add(1, i)) do

stdout.put(“i=", i, nl);

endfor;

/1 The above, rewitten as a while |oop, becores:

nov(O, i);
while(i <10) do

stdout.put(“i=", i, nl);
add(1, i);
endwhi | e;

2.9.5 The REPEAT..UNTIL Statement

The HLA repeat..until statement uses the felitg syntax:

r epeat
sequence
of one or ——— Loop Body

nore statenents

until (expression);

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Figure 2.9 HLA Repeat..Until Statement Syntax

The HLA REPEA..UNTIL statement tests for loop termination at the bottom of the [Dogrefore,
the statements in the loop bodyal/s eecute at least once. Upon encountering the UNTIL clause, the pro
gram will evaluate the xgression and repeat the loop if thression isdlse (that is, it repeats whilal$e).
If the expression ealuates true, the control transfers to thet Statement follwing the UNTIL clause.

The following simple &le demonstrates one use for the RERPEMNTIL statement:

nov(10, ecx);
r epeat

“

stdout.put(“ecx =*“, ecx, nl);
sub(1, ecx);

until (ecx =0);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page35

Chapter Two Volume 1

If the loop body will avays eecute at least once, then it is morécéfnt to use a REPHAUNTIL
loop rather than WHILE loop.

2.9.6 The BREAK and BREAKIF Statements

The BREAK and BREAKIF statements pide the ability to prematurelyi from a loop.They use the
following syntax:

br eak;

breaki f (expression);

The expression in the BREAKIF
statement has the same
restrictions as the IF statement.

Figure 2.10 HLA Break and Breakif Syntax

The BREAK statementx@s the loop that immediately contains the breBke BREAKIF statement
evaluates the booleaxgression and terminates the containing loop if #pression ealuates true.

2.9.7 The FOREVER..ENDFOR Statement

The FOREVER statement uses the fwilog syntax:

f or ever
sequence
of one or ———— Loop Body
nore statenents

endf or ;

Figure 2.11 HLA Forever Loop Syntax

This statement creates an mite loop.You may also use the BREAK and BREAKIF statements along
with FOREVER..ENDFOR to create a loop that tests for loop termination in the middle of the loop. Indeed,
this is probably the most common use of this loop as thenfiolipexample demonstrates:

f orever
stdout. put(“Enter an integer |less than 10: “);
stdin.get(i);
breakif(i < 10);
stdout. put (“The val ue needs to be less than 10!", nl);

endfor;

Page36 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

2.9.8 The TRY..EXCEPTION..ENDTRY Statement

The HLATRY..EXCEPTION..ENDTHR statement prnades \ery paverful exception handlingapabi
ities. The syntax for this statement is the fallog:

try

sequence
of one or
nor e statenents

Statements to test

exception(exceptionlD)

At least one
exception handling
sequence block.
of one or
nore statenents
exception(exceptionlD) Zero or more (optional)
exception handling

of one or
nore statenents

endtry;

Figure 2.12 HLA Try..Except..Endtry Statement Syntax

The TRY..ENDTRY statement protects a block of statements durkeguion. If these statements,
between th@RY clause and therit EXCEPTION clause xecute without incident, control transfers to the
first statement after the ENDYRmmediately after xecuting the last statement in the protected block. If an
error (xception) occurs, then the program interrupts control at the point oktlegten (that is, the pro
gramraisesan ception). Eachyeeption has an unsigned ig& constant associated with it, krmoas the
exception ID. The “excepts.hhf” headerlé in the HLA Standard Library predeés seeral exception IDs,
although you may createwenes for your wn purposesWhen an rception occurs, the system compares
the exception ID aginst the ®lues appearing in each of the one or more EXCEPTION clausesifgjlthe
protected code. If the curremtception ID matches one of the EXCEPTIO&lues, control continues with
the block of statements immediately foliog that EXCEPTIONAfter the exception handling code com
pletes gecution, control transfers to thesti statement follwing the ENDTR.

If an exception occurs and there is no eefiRY..ENDTRY statement, or the agé TRY..ENDTRY
statements do not handle the spedafiception, the program will abort with an error message.

The folloving sample program demonstratesvhio use thelfRY..ENDTRY statement to protect the
program from bad user input:

Beta Draft - Do not distribute © 2001, By Randall Hyde Page37

Chapter Two Volume 1
r epeat

nov(fal se, Goodl nteger); /1 Note: Goodlnteger nust be a bool ean var.
try

stdout.put(“Enter an integer: “);
stdin.get(i);
nov(true, Goodlnteger);

exception(ex.ConversionError);
stdout.put(“Illegal nuneric value, please re-enter”, nl);
exception(ex.Val ueQut & Range);
stdout. put(“Value is out of range, please re-enter”, nl);
endtry;
until (Goodl nteger);

The REPEA..UNTIL loop repeats this code as long as there is an error during input. Shoulttepn e
tion occur control transfers to the EXCEPTION clauses to see if getsion error (e.g., ilgal characters
in the number) or a numerizerflow occurs. If either of thesexeeptions occurtthen thg print the appropri
ate message and contrall§ out of theTRY..ENDTRY statement and the REPEAUNTIL loop repeats
sinceGoodIntger was neer set to true. If a diérent exception occurs (one that is not handled in this code),
then the program aborts with the spediferror messaae

Please see theXeepts.hhf” headerl& that accompanies the HLA release for a complete list of all the
exception ID codesThe HLA documentation will describe the purpose of each of thesp#on codes.

2.10 Introduction to the HLA Standard Library

There are tw reasons HLA is much easier to learn and use than standard assembly lafige figss.
reason is HLAs high level syntax for declarations and control structuidss HLA feature lgerages your
high level language knweledge, reducing the need to learn arcane syntaxyiafioyou to learn assembly
language more &€iently. The other half of the equation is thikA Standard LibraryThe HLA Standard
Library provides lot of commonly needed, easy to use, assembly language routines that you can call without
having to write this code yourself (oven learn ha to write yourself).This eliminates one of the ar
stumbling blocks manpeople hae when learning assembly language: the need for sophisticated 1/0 and
support code in order to write basic statements. Prior to thenad¥ a standardized assembly language
library, it often took weeks of study before amnassembly language programmer could do as much as print
a string to the displayVith the HLA Standard Librarythis roadblock is remed and you can concentrate
on learning assembly language concepts rather than learnifigviel I/O details that are spedifio a gven
operating system.

A wide variety of library routines is only part of HL#\supportAfter all, assembly language libraries
have been around for quite some tieHLA's Standard Library continues the HLA tradition byyiding
a high lerel language inteafte to these routines. Indeed, the HLA language itsadf aviginally designed
speciftally to allav the creation of a high¥el accessible set of library routifésThis high level interface,

9. An experienced programmer may wonder why this code uses a boolean variable rather than a BREAKIF statement to exit
the REPEAT..UNTIL loop. There are some technical reasons for this that you will learn about later in this text.

10. E.g., the UCR Standard Library for 80x86 Assembly Language Programmers.

11. HLA was created because MASM was insufficient to support the creation of the UCR StdLib v2.0.

Page38 © 2001, By Randall Hyde Beta Draft - Do not distribute

combined with the high el nature of may of the routines in the librarypacks a surprising amount of

Hello, World of Assembly Language

power in an easy to use package.

The HLA Standard Library consists ofveeal modules @anized by catgory. The following table lists

mary of the modules that areailable'Z

Table3: HLA Standard Library Modules

Name Description
args Command line parameter parsing support routines.
conv Various cowersions between strings and othalues.
cset Character set functions.
DateTime Calendardate, and time functions.
excepts Exception handling routines.
fileio File input and output routines
hla Special HLA constants and othexlwes.
Linux Linux system calls (HLA Linux ersion only).
math Transcendental and other mathematical functions.
memory Memory allocation, deallocation, and support code.
misctypes Miscellaneous data types.
patterns The HLA pattern matching library
rand Pseudo-random number generators and support code.
stdin User input routines
stdout Provides user output andwsal other support routines.
stdlib A special include fe that links in all HLA standard library modules.
strings HLA'’s paverful string library
tables Table (associate array) support routines.
win32 Constants used Windows calls (HLAWIN32 \ersion, only)
x86 Constants and other items spexcib the 80x86 CPU.

Later sections of this xeéwill explain maly of these modules in greater detaliis section will concen

trate on the most important routines (at least tpriveng HLA programmers), thetdiolibrary.

12. Since the HLA Standard Library is expanding, this list is probably out of date. Please see the HLA documentation for a

current list of Standard Library modules.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Page39

Chapter Two Volume 1

2.10.1 Predefined Constants in the STDIO Module

Perhaps theft place to start is with a description of some common constants that the STDIO module
defines for you. One constant yoea’'seen already in code appearing in this cha@tarsider the folling
(typical) example:

stdout.put(“Hello World”, nl);

Thenl appearing at the end of this statement standsdwline. The nl identifier is not a special HLA
resened word, nor is it specifi to thestdout.putstatementinstead, it5 simply a predefied constant that
corresponds to the string containing the standard end of line sequence (this is a carriage return/line feed pair
underWindows or just a line feed under Linux).

In addition to thenl constant, the HLA standard 1/O library module de§ seeral other useful charac
ter constantsThey are

e stdio.bell The ASCII bell character. Beeps the speaker when printed.
e stdio.bs The ASCII backspace character.

o stdio.tab The ASCII tab character.

e stdio.eoln A linefeed character (even under Windows).

o stdio.If The ASCII linefeed character.

e stdio.cr The ASCII carriage return character.

Except foml, these characters appear instdionamespace (and, therefore, require the “stgrefix).
The placement of theg€SCII constants within thetdio namespace is to helpad naming conitts with
your avn variables.Thenl name does not appear within a namespace because you will eisedften and
typing stdio.nlwould get tiresomeery quickly

2.10.2 Standard In and Standard Out

Many of the HLA I/O routines ha astdin or stdoutprefix. Technically this means that the standard
library defnes these names innamespac’é. In practice, this prefisuggests where the input is coming
from (thestandad inputdevice) or going to (thestandad outputdevice). By deéult, the standard input
device is the systemegboard. Lilewise, the defult standard output diee is the console displago, in
general, statements thateatdin or stdoutprefixes will read and write data on the consoleick

When you run a program from the command line wimdor shell), you hae the option ofedirecting
the standard input and/or standard outpwicds.A command line parameter of the form “>oletfiredi-
rects the standard outputuvitee to the speciéid fle (outfie). A command line parameter of the form
“<infile” redirects the standard input so that its data comes from the sgecfut fie (infile). The follow-
ing examples demonstrate Wwao use these parameters when running a program named “testpgm” in the
command winda*

t est pgm <i nput . dat a
t est pgm >out put . t xt
testpgm <in.txt >output.txt

13. Namespaces will be the subject of a later chapter.
14. Note for Linux users: depending on how your system is set up, you may need to type “./” in front of the program’s name
to actually execute the program, e.g., “./testpgm <input.data”.

Page40 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

2.10.3 The stdout.newln Routine

Thestdout.n&/n procedure prints a mdine sequence to the standard outpwiake This is functionally
equialent to saying “stdout.put(nl);” Of course, the calstdout.n&In is sometimes a little more cos
nient. Example of call:

stdout . new n();

2.10.4 The stdout.puti X Routines

The stdout.puti8 stdout.putil6 andstdout.puti32ibrary routines print a single parameter (one byte,
two bytes, or four bytes, respeely) as a signed inger \alue.The parameter may be a constant,gister
or a memory ariable, as long as the size of the actual parameter is the same as the size of the formal param
eter

These routines print thealue of their speciid parameter to the standard outpwicke These routines
will print the value using the minimum number of print positions possible. If the numbegasivee these
routines will print a leading minus sign. Here are soraamples of calls to these routines:

stdout . puti 8(123);
st dout . puti 16(DX);
stdout. puti 32(i32Var);

2.10.5 The stdout.puti XSize Routines

The stdout.puti8Sizestdout.putil6Sizeand stdout.puti32Sizeoutinesoutput signed ingger \alues to
the standard output, just ékthestdout.putiXroutines.These routines, haever, provide more control eer
the output; the let you specify the (minimum) number of print positions thki® will require on output.
These routines also let you specify a padding character should the gddri€filager than the minimum
needed to display thele.These routines require the follilng parameters:

stdout. puti 8Si ze(Val ue8, wi dth, padchar);
stdout. puti 16Si ze(Val uel6, wi dth, padchar);
stdout . puti 32Si ze(Val ue32, width, padchar);

TheValueXparameter can be a constant,gigter or a memory location of the speedisize Thewidth
parameter can be wasigned intger constant that is between -256 and +256; this parameter may be a con
stant, rgister (32-bit), or memory location (32-biffhe paddar parameter should be a single character
value.

Like thestdout.putiXroutines, these routines print the specifialue as a signed irger constant to the
standard output d&ce. These routines, ligever, let you specify théield widthfor the \alue.The field width
is the minimum number of print positions these routines will use when printinglthe The width param
eter specifis theminimum field width. If the number wuld require more print positions (e.qg., if you attempt
to print “1234” with a feld width of two), then these routines will print\wvever maly characters are neces
sary to properly display thealue. On the other hand, if tmadth parameter is greater than the number of
character positions required to display th&ue, then these routines will print sonxéra padding characters
to ensure that the output has at legisith character positions. If theidth value is ngative, the number is
left justified in the print &Id; if thewidth value is positie, the number is right jus&f in the print £Id.

If the absolute @lue of thewidth parameter is greater than the minimum number of print positions, then
thesestdout.putiXSizeoutines will print a padding character before or after the nunilber paddar
parameter specés which character these routines will print. Most of the time yauldwspecify a space as
the pad character; for special cases, you might specify some other ch®attemberthepaddar param
eter is a characteralue; in HLA character constants are surrounded by apostrophes, not quotation marks.
You may also specify an eight-bigister as this parameter

Beta Draft - Do not distribute © 2001, By Randall Hyde Page4l

Chapter Two Volume 1

Here is a short HLA program that demonstrates the use of the puti32Size routine to display aHist of v
ues in tablar form:

progr am Nuns| nCol urms;
#include(“stdlib.hhf”);
var

i 32: int32;

Col Ont: int8;
begi n Nunsl nCol ums;

nov(96, i32);

nov(0, ColOnt);

while(132 >0) do

if(Colnt =8) then

stdout . new n();
mov(0, Colnt);

endi f;
stdout. puti32Size(i32, 5 ‘ *);
sub(1, i32);

add(1, Colnt);

endwhi | e;
stdout. new n();

end Nunsl nCol ums;

Program 2.4 Columnar Output Demonstration Using stdio.Puti32Size

2.10.6 The stdout.put Routine

The stdout.putroutine'® is one of the mostékible output routines in the standard output library mod
ule. It combines most of the other output routines into a single, easy to use, procedure.

The generic form for thsetdout.putoutine is the folling:

stdout. put (/ist_of_values to_output);

The stdout.putparameter list consists of one or more constangsstezs, or memoryariables, each
separated by a commiBhis routine displays thealue associated with each parameter appearing in the list.
Since weve already been using this routine throughout this chapialve already seen lots okamples of
this routines basic form. It is wrth pointing out that this routine hawveeal additional features not apparent
in the xamples appearing in this chaptkr particulay each parameter can &kne of the follwing two
forms:

value

15. Stdout.puts actually a macro, not a procedure. The distinction between the two is beyond the scope of this chapter. How-
ever, this text will describe their differences a little later.

Page42 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

value:width

Thevaluemay be aw legal constant, rgister or memory wariable object. In this chaptgrouve seen
string constants and memorgriables appearing in ttetdout.putparameter listThese parameters coifre
spond to the st form aboe. The second parameter form &bdets you specify a minimumefd width,
similar to thestdout.putiXSizeoutineéLB. The folloving sample program produces the same output as the
previous program; hoever, it usesstdout.putather tharstdout.puti32Size

progr am Nunsl nCol unns2;
#include(“stdlib.hhf”);
var

i 32: int32;

ColOnt: int8;
begi n Nunsl nCol ums2;

nmov(96, 132);

mov(0, ColOnt);

while(132 >0) do

if(Colnt =8) then

stdout . new n();
mov(0, ColOnt);

endi f;
stdout.put(i32:5);
sub(1, i32);

add(1, GolOnt);

endwhi | e;
stdout. put(nl);

end Nunsl nCol ums2;

Program 2.5 Demonstration of stdout.put Field Width Specification

The stdout.putroutine is capable of much more than the &dtributes this section describéis text
will introduce those additional capabilities as appropriate.

2.10.7 The stdin.getc Routine.

Thestdin.getcroutine reads the reavailable character from the standard inputice's input uffer”.
It returns this character in the CRWL register The folloving example program demonstrates a simple use
of this routine:

16. Note that you cannot specify a padding character when usisglthe.putroutine; the padding character defaults to the
space character. If you need to use a different padding character, sadiahieputiXSizeoutines.
17. “Buffer” is just a fancy term for an array.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page43

Chapter Two Volume 1
program char | nput ;
#include(“stdlib.hhf”);

var
counter: int32;

begi n charl nput;

/1 The follow ng repeats as long as the user
/1 confirms the repetition.

r epeat
/1 Print out 14 val ues.

nov(14, counter);
whi | e(counter > 0) do

stdout. put(counter:3);
sub(1, counter);

endwhi | €;
/1 Vit until the user enters ‘y’ or ‘n'.

stdout.put(nl, nl, “Do you wish to see it again? (y/n):”);
f orever

stdin. readlLn();
stdin.getc();
breaki f (al ‘n);
breaki f(al
stdout.put(“Error, please enter only 'y’ or

ny: u);

endf or;
stdout . new n();

until(al ='n");

end charl nput;

Program 2.6 ~ Demonstration of the stdin.getc() Routine

This program uses tretdin.ReadLmoutine to force a e line of input from the useA description of
stdin.ReadLrappears just a little later in this chapter

2.10.8 The stdin.geti X Routines

The stdin.ceti8, stdin.getil6 andstdin.geti32 routines read eight, 16, and 32-bit signedgatewalues
from the standard input diee. These routines return theialaes in theAL, AX, or EAX register respee
tively. They provide the standard mechanism for reading signedént@lues from the user in HLA.

Like thestdin.getcroutine, these routines read a sequence of characters from the standardffaput b
They bagin by skipping wer ary white space characters (spaces, tabs, etc.) and thesrtcthre follaving
stream of decimal digits (with an optional, leading, minus sign) into the correspondiey. iNteese rou

Paged4 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

tines raise anxeeption (that you can trap with tA&Y..ENDTRY statement) if the input sequence is not a
valid integer string or if the user input is toodarto ft in the speciéd inteyer size. Note thatalues read by
stdin.geti8 must be in the range -128..+127alves read bystdin.getilé must be in the range
-32,768..+32,767; andchlues read bgtdin.geti32 must be in the range -2,147,483,648..+2,147,483,647.

The folloving sample program demonstrates the use of these routines:

program i nt | nput ;

#incl ude(“stdlib. hhf”):

var
i 8: ints;
i 16: int16;
i 32: int32;

begi n i ntlnput;
/1 Read integers of varying sizes fromthe user:

stdout.put(“Enter a small integer between -128 and +127: “);
stdin.geti8();
nov(al, i8);

stdout.put(“Enter a small integer between -32768 and +32767: “);
stdin.geti16();
nmov(ax, 116);

stdout.put(“Enter an integer between +/- 2 billion: “);
stdin. geti32();
nov(eax, 132);

// Display the input val ues.

st dout . put
(
nl,
“Here are the nunbers you entered:”, nl, nl,
“Eight-bit integer: “, i8:12, nl,
“16-bit integer: “,116:12, nl,
“32-bit integer: “,i32:12, nl
)

end intlnput;

Program 2.7 stdin.getiX Example Code

You should compile and run this program and test what happens when you exter that is out of
range or enter an ilfal string of characters.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page45

Chapter Two Volume 1

2.10.9 The stdin.readLn and stdin.flushinput Routines

Wheneer you call an input routine ldstdin.getcor stdin.geti32, the program does not necessarily read
the \alue from the user at that moment. Instead, the HLA Standard Lituffersbthe input by reading a
whole line of tet from the user Calls to input routines will fetch data from this inpuffer until the luffer
is empty While this uffering scheme is &tient and covenient, sometimes it can be confusing. Consider
the follonving code sequence:

stdout.put("Enter a small integer between -128 and +127: ");
stdin. geti8();
nmov(al, i8);

stdout. put("Enter a small integer between -32768 and +32767: ");
stdin.geti16();
nov(ax, 116);

Intuitively, you would expect the program to print thedi prompt message ait for user input, print the
second prompt message, anditwWor the second user input. Wever, this isnt exactly what happens.of
example if you run this code (from the sample program in thaqare section) and enter theté123 456"
in response to theréit prompt, the program will not stop for additional user input at the second prompt.
Instead, it will read the second igex (456) from the inputUffer read during the xecution of the
stdin.eti8 call.

In general, thetdinroutines only read x from the user when the inputiffer is emptyAs long as the
input kuffer contains additional characters, the input routines will attempt to read their data frarffehe b
You may tak adwantage of this bek@r by writing code sequences such as the alig:

stdout. put (“Enter two integer values: “);
stdin.geti32();

nov(eax, intval);

stdin. geti32();

nov(eax, AnotherintVal);

This sequence alles the user to enter both values on the same line (separated by one or more white space
characters) thus preserving space on the screen. So the input buffer behavior is desirable every now and then.

Unfortunately, the buffered behavior of the input routines is definitely counter-intuitive at other times.
Fortunately, the HLA Standard Library provides two routirsgdin.readLnandstdin.fushinput that let you
control the standard inputiffer. The stdin.readLnroutine discardswerything that is in the inputuffer and
immediately requires the user to enter & fige of text. The stdin.fushinputroutine simply discardsvery-
thing that is in the Wffer. The net time an input routinex@cutes, the system will require aankne of input
from the userYou would typically callstdin.eadLnimmediately before some standard input routine; you
would normally calktdin.fushinputimmediately after a call to a standard input routine.

Note: If you are callingtdin.leadLnand you find that you are héng to input your data twice, this is a
good indication that you should be callisiglin.fushinputrather tharstdin.,eadLn In general, you should
always be able to caditdin.fushinputto flush the input bffer and read a meline of data on the méinput
call. Thesstdin.readLnroutine is rarely necessaso you should us&din.fushinputunless you really need
to immediately force the input of awmdine of text.

2.10.10The stdin.get Macro

The stdin.get macro combines marof the standard input routines into a single call, in much the same
way thatstdout.putombines all of the output routines into a single éaitually, stdin.getis much easier to
use tharstdout.putsince the only parameters to this routine are a lisaiélle names.

Let's ravrite the &le gven in the preious section:

stdout.put(“Enter two integer values: “);

Page46 © 2001, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

stdin.geti32();

nov(eax, intval);

stdin. geti32();

nov(eax, AnotherintVal);

Using thestdin.getmacro, we could rewrite this code as:
stdout.put(“Enter two integer values: “);

stdin.get(intval, AnotherintVal);

As you can see, thetdin.getroutine is a little more convenient to use.

Note thatstdin.get stores the inputatues directly into the memonasiables you specify in the parame
ter list; it does not return thealues in a rgister unless you actually specify ajister as a parametéthe
stdin.get parameters must all baniables or rgisters®.

2.11

Putting It All Together

This chapter has gered a lot of groundiVhile youVve still got a lot to learn about assembly language
programming, this chaptecombined with your kneledge of high leel languages, prides just enough
information to let you start writing real assembly language programs.

In this chapteryouve seen the basic format for an HLA progr¥ou’ve seen hwe to declare intger,
characterand booleanariablesYou hae talen a look at the internal ganization of the Intel 80x86 CPU
family and learned about the MOADD, and SUB instruction&ou've looked at the basic HLA highvel
language control structures (WHILE, REPEAT, FOR, BREAK, BREAKIF FOREVER, andlRY) as
well as what constitutes agi boolean gpression in these statements. Finalys chapter has introduced
several commonly-used routines in the HLA Standard Library

You might think that kneing only three machine instructions is hardlyfiignt to write meaningful
programs. Hwever, those three instructionsiv, add,andsub), combined with the HLA high \el| control
structures and the HLA Standard Library routines are actuallyaquot to knwing several dozen machine
instructions. Certainly enough to write simple programs. Indeed, with only enfee arithmetic instruc
tions plus the ability to write younmen procedures, yoli'lbe able to write almost grprogram. Of course,
your journg into the world of assembly language has only jugjure youll learn some more instructions,
and hev to use them, starting in thextehapter

2.12

Sample Programs

This section contains geral little HLA programs that demonstrate some of Hli&atures appearing in
this chapterThese short>amples also demonstrate that it is possible to write meaningful (if simple) pro
grams in HLA using nothing more than the information appearing in this chdfaermay fnd all of the
sample programs appearing in this section irf¢h82” subdirectory of the “@lumel” directory in the soft
ware that accompanies thiste

2.12.1 Powers of Two Table Generation

The folloving sample program generates a table listing all tieepof two between 2**0 and 2**30.

18. Note that register input is always in hexadecimal or base 16. The next chapter will discuss hexadecimal numbers.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page47

Chapter Two

/'l Power sCf Two-

/1

/1 This programgenerates a nicely-formatted
/1 “Powers of Two” table. It conputes the
/1 various powers of two by successively

/1 doubling the value in the pw 2 variabl e.

pr ogr am Power sCf Two;
#include(“stdlib.hhf”);

static
pw Cf 2: i nt 32;
LoopOntr: i nt 32;

begi n Power sCf Two;
/1 Print a start up banner.

“

stdout. put(“Powers of two: “, nl, nl);

Volume 1

[l Initialize “pwC2” with 2**0 (two raised to the zero power).

nmov(1, pwC2);

/'l Because of the limtations of 32-bit signed integers,

/1 we can only display 2**0..2**30.

nmov(0, LoopOntr);
whi | e(LoopOntr < 31) do

stdout.put(“2**(“, LoopOntr:2, “) =*“, pwC2:10,

/1 Double the value in pw 2 to conpute the

/1 next power of two.

mov(pw 2, eax);

add(eax, eax);

mov(eax, pw 2);

/1 Move on to the next |loop iteration.

inc(LoopOntr);

endwhi | e;
stdout. new n();

end Power sCf Two;

)

Program 2.8 Powers of Two Table Generator Program

2.12.2

Checkerboard Program

This short little program demonstrateswhio generate a cheetboard pattern with HLA.

Page48

© 2001, By Randall Hyde

Beta Draft - Do not distribute

Hello, World of Assembly Language

/'l Checker Boar d-

/1

// This program denonstrates how to draw a
/1 checkerboard using a set of nested while
/1 1 oops.

pr ogr am Checker Boar d;
#include(“stdlib.hhf”);

static
xCoor d: int8; /1 Counts off eight squares in each row
yCoor d: int8; // Counts off four pairs of squares in each col um.
Col Ont r: int8; /1 Counts off four rows in each square.

begi n Checker Boar d;

nov(0, yCoord);
while(yCoord < 4) do

/1 Display a row that begins with bl ack.

mov(4, ColOntr);
r epeat

// Each square is a 4x4 group of

/1 spaces (white) or asterisks (bl ack).
/1 Print out one row of asterisks/spaces
// for the current row of squares:

nmov(0, xCoord);
whi | e(xCoord < 4) do

stdout. put (“**** Y
add(1, xCoord);

endwhi | e;
st dout . new n();
sub(1, ColCntr);
until (ColOntr =0);
/1 Display a rowthat begins with white.

mov(4, ColOntr);
r epeat

// Print out a single row of
/| spaces/asterisks for this
/1l row of squares:

mov(0, xCoord);
whi |l e(xCoord < 4) do

stdout. put (“ LEETLINY
add(1, xCoord);

endwhi | e;

stdout . new n();
sub(1, Col Ontr);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page49

Chapter Two

until (ColOntr =0);
add(1, yCoord);

endwhi | €;

end Checker Boar d;

Volume 1

Program 2.9 Checkerboard Generation Program

2.12.3 Fibonacci Number Generation

The Fibonacci sequence isry important to certain algorithms in Computer Science and o#iés.fi
The folloving sample program generates a sequence of Fibonacci numbers for n=1..40.

Pages0

/1 This program generates the fibonocci
/1 sequence for n=1..40.
/1
/1 The fibonocci sequence is defined recursively
// for positive integers as foll ows:
/1
/1 fib(1l) = 1;
/Il fib(2) = 1;
/1 fib(n) =fib(n-1) +fib(n-2).
/1
/1 This programprovides an iterative sol ution.
program fib;
#include(“stdlib.hhf”);
static
Fi bOntr: int32;
Qur Fi b: i nt32;
Last Fi b: i nt32;

TwoFi bsAgo: int32;

begin fib;

/1 Some sinple initialization:

nov(1, LastFib);
nov(1, TwoFi bsAgo);

/1 Print fib(1) and fib(2) as a special case:

st dout . put

(
“fib(1) = 17, nl
“fib(2) = 1", nl

© 2001, By Randall Hyde

Beta Draft - Do not distribute

Hello, World of Assembly Language
)
/1 Use a loop to conpute the renaining fib val ues:

mov(3, FibOntr);
while(FibOntr <= 40) do

/1 Get the last two conputed fibonocci val ues
/1 and add them toget her:

nmov(LastFib, ebx);
nmov(TwoFi bsAgo, eax);
add(ebx, eax);

/1l Save the result and print it:

mov(eax, QurFib);
stdout.put(“fib(“,FibOtr:2, “) =", QurFi b:10, nl);

/1l Recycle current LastFib (in ebx) as TwoFi bsAgo,
/1 and recycle QurFib as LastFib.

nmov(eax, LastFib);
nov(ebx, TwoFi bsAgo);

/1 Bunp up our |oop counter:
add(1, FibOtr);
endwhi | e;

end fib;

Program 2.10 Fibonacci Sequence Generator

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagesb1

Chapter Two Volume 1

Pages2 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Hello, World of Assembly Language Chapter Two
	2.1 Chapter Overview
	2.2 Installing the HLA Distribution Package
	2.2.1 Installation Under Windows
	2.2.2 Installation Under Linux
	2.2.3 Installing “Art of Assembly” Related Files

	2.3 The Anatomy of an HLA Program
	2.4 Some Basic HLA Data Declarations
	2.5 Boolean Values
	2.6 Character Values
	2.7 An Introduction to the Intel 80x86 CPU Family
	2.8 Some Basic Machine Instructions
	2.9 Some Basic HLA Control Structures
	2.9.1 Boolean Expressions in HLA Statements
	2.9.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement
	2.9.3 The WHILE..ENDWHILE Statement
	2.9.4 The FOR..ENDFOR Statement
	2.9.5 The REPEAT..UNTIL Statement
	2.9.6 The BREAK and BREAKIF Statements
	2.9.7 The FOREVER..ENDFOR Statement
	2.9.8 The TRY..EXCEPTION..ENDTRY Statement

	2.10 Introduction to the HLA Standard Library
	2.10.1 Predefined Constants in the STDIO Module
	2.10.2 Standard In and Standard Out
	2.10.3 The stdout.newln Routine
	2.10.4 The stdout.putiX Routines
	2.10.5 The stdout.putiXSize Routines
	2.10.6 The stdout.put Routine
	2.10.7 The stdin.getc Routine.
	2.10.8 The stdin.getiX Routines
	2.10.9 The stdin.readLn and stdin.flushInput Routines
	2.10.10 The stdin.get Macro

	2.11 Putting It All Together
	2.12 Sample Programs
	2.12.1 Powers of Two Table Generation
	2.12.2 Checkerboard Program
	2.12.3 Fibonacci Number Generation

