

HLA Code Generation for HLL Statements

t

e

ith

e the

e

ir

n

e

 is

ray

d with

l

h

for

ata
HLA Code Generation for HLL Statements Appendix L

One of the principal advantages of using assembly language over high level languages is the control tha
assembly provides. High level languages (HLLs) represent an abstraction of the underlying hardware.
Those who write HLL code give up this control in exchange for the engineering efficiencies enjoyed by HLL
programmers. Some advanced HLL programmers (who have a good mastery of the underlying machin
architecture) are capable of writing fairly efficient programs by recognizing what the compiler does w
various high level control constructs and choosing the appropriate construct to emit the machine cody
want. While this “low-level programming in a high level language” does leave the programmer at the mercy
of the compiler-writer, it does provide a mechanism whereby HLL programmers can write more efficient
code by chosing those HLL constructs that compile into efficient machine code.

Although the High Level Assembler (HLA) allows a programmer to work at a very low level, HLA also
provides structured high-level control constructs that let assembly programmers use higher-level code to
help make their assembly code more readable. Those assembly language programmers who need (or want)
to exercise maximum control over their programs will probably want to avoid using these statements sinc
they tend to obscure what is happening at a really low level. At the other extreme, those who would always
use these high-level control structures might question if they really want to use assembly language in the
applications; after all, if they’re writing high level code, perhaps they should use a high level language and
take advantage of optimizing technology and other fancy features found in modern compilers. Betwee
these two extremes lies the typical assembly language programmer. The one who realizes that most cod
doesn’t need to be super-efficient and is more interested in productively producing lots of software rather
than worrying about how many CPU cycles the one-time initialization code is going to consume. HLA
perfect for this type of programmer because it lets you work at a high level of abstraction when writing code
whose performance isn’t an issue and it lets you work at a low level of abstraction when working on code
that requires special attention.

Between code whose performance doesn’t matter and code whose performance is critical lies a big g
region: code that should be reasonably fast but speed isn’t the number one priority. Such code needs to be
reasonably readable, maintainable, and as free of defects as possible. In other words, code that is a good
candidate for using high level control and data structures if their use is reasonably efficient.

Unlike various HLL compilers, HLA does not (yet!) attempt to optimize the code that you write. This
puts HLA at a disadvantage: it relies on the optimizer between your ears rather than the one supplie
the compiler. If you write sloppy high level code in HLA then a HLL version of the same program wil
probably be more efficient if it is compiled with a decent HLL compiler. For code where performance mat-
ters, this can be a disturbing revelation (you took the time and bother to write the code in assembly but an
equivalent C/C++ program is faster). The purpose of this appendix is to describe HLA’s code generation in
detail so you can intelligently choose when to use HLA’s high level features and when you should stick wit
low-level assembly language.

L.1 The HLA Standard Library

The HLA Standard Library was designed to make learning assembly language programming easy
beginning programmers. Although the code in the library isn’t terrible, very little effort was made to write
top-performing code in the library. At some point in the future this may change as work on the library
progresses, but if you’re looking to write very high-performance code you should probably avoid calling
routines in the HLA Standard Library from (speed) critical sections of your program.

Don’t get the impression from the previous paragraph that HLA’s Standard Library contains a bunch of
slow-poke routines, however. Many of the HLA Standard Library routines use decent algorithms and d
structures so they perform quite well in typical situations. For example, the HLA string format is far more
efficient than strings in C/C++. The world’s best C/C++ strlen routine is almost always going to be slower
than HLA str.len function. This is because HLA uses a better definition for string data than C/C++, it has lit-
tle to do with the actual implementation of the str.len code. This is not to say that HLA’s str.len routine can-
not be improved; but the routine is very fast already.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1541

Appendix L

d

r le

 objects

dy and

e above
One problem with using the HLA Standard Library is the frame of mind it fosters during the develop-
ment of a program. The HLA Standard Library is strongly influenced by the C/C++ Standard Library an
libraries common in other high level languages. While the HLA Standard Library is a wonderful tool that
can help you write assembly code faster than ever before, it also encourages you to think at a higher level.
As any expert assembly language programmer can tell you, the real benefits of using assembly language
occur only when you “think in assembly” rather than in a high level language. No matter how efficient the
routines in the Standard Library happen to be, if you’re “writing C++ programs with MOV instructions” the
result is going to be little better than writing the code in C++ to begin with.

One unfortunate aspect of the HLA Standard Library is that it encourages you to think at a highevel
and you’ll often miss a far more efficient low-level solution as a result. A good example is the set of string
routines in the HLA Standard Library. If you use those routines, even if they were written as efficiently as
possible, you may not be writing the fastest possible program you can because you’ve limited your thinking
to string objects which are a higher level abstraction. If you did not have the HLA Standard Library laying
around and you had to do all the character string manipulation yourself, you might choose to treat the
as character arrays in memory. This change of perspective can produce dramatic performance improvement
under certain circumstances.

The bottom line is this: the HLA Standard Library is a wonderful collection of routines and they’re not
particularly inefficient. They’re very easy and convenient to use. However, don’t let the HLA Standard
Library lull you into choosing data structures or algorithms that are not the most appropriate for a given sec-
tion of your program.

L.2 Compiling to MASM Code -- The Final Word

The remainder of this document will discuss, in general, how HLA translates various HLL-style state-
ments into assembly code. Sometimes a general discussion may not provide specific answers you need
about HLA’s code generation capabilities. Should you have a specific question about how HLA generates
code with respect to a given code sequence, you can always run the compiler and observe the output it pro-
duces. To do this, it is best to create a simple program that contains only the construct you wish to stu
compile that program to assembly code. For example, consider the following very simple HLA program:

program t;

begin t;

 if(eax = 0) then

 mov(1, eax);

 endif;

end t;

If you compile this program using the command window prompt “hla -s t.hla” then HLA produces a
(MASM) file similar to the following1:

 if @Version lt 612
 .586
 else
 .686
 .mmx
 .xmm

1. Because the code generator in HLA is changing all the time, this file may not reflect an accurate compilation of th
HLA code. However, the concepts will be the same.
Page 1542 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 endif
 .model flat, syscall
offset32 equ <offset flat:>
 assume fs:nothing
?ExceptionPtr equ <(dword ptr fs:[0])>
 externdef ??HWexcept:near32
 externdef ??Raise:near32

std_output_hndl equ -11

 externdef __imp__ExitProcess@4:dword
 externdef __imp__GetStdHandle@4:dword
 externdef __imp__WriteFile@20:dword

cseg segment page public 'code'
cseg ends
readonly segment page public 'data'
readonly ends
strings segment page public 'data'
strings ends
dseg segment page public 'data'
dseg ends
bssseg segment page public 'data'
bssseg ends

strings segment page public 'data'

?dfltmsg byte "Unhandled exception error.",13,10
?dfltmsgsize equ 34
?absmsg byte "Attempted call of abstract procedure or method.",13,10
?absmsgsize equ 55
strings ends
dseg segment page public 'data'
?dfmwritten word 0
?dfmStdOut dword 0

 public ?MainPgmCoroutine
?MainPgmCoroutine byte 0 dup (?)
 dword ?MainPgmVMT
 dword 0 ;CurrentSP
 dword 0 ;Pointer to stack
 dword 0 ;ExceptionContext
 dword 0 ;Pointer to last caller
?MainPgmVMT dword ?QuitMain
dseg ends
cseg segment page public 'code'

?QuitMain proc near32
 pushd 1
 call dword ptr __imp__ExitProcess@4

?QuitMain endp

cseg ends

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1543

Appendix L
cseg segment page public 'code'

??DfltExHndlr proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?dfltmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?dfltmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

??DfltExHndlr endp

 public ??Raise
??Raise proc near32
 jmp ??DfltExHndlr
??Raise endp

 public ??HWexcept
??HWexcept proc near32
 mov eax, 1
 ret
??HWexcept endp

?abstract proc near32

 pushd std_output_hndl
 call __imp__GetStdHandle@4
 mov ?dfmStdOut, eax
 pushd 0 ;lpOverlapped
 pushd offset32 ?dfmwritten ;BytesWritten
 pushd ?absmsgsize ;nNumberOfBytesToWrite
 pushd offset32 ?absmsg ;lpBuffer
 pushd ?dfmStdOut ;hFile
 call __imp__WriteFile@20

 pushd 0
 call dword ptr __imp__ExitProcess@4

?abstract endp

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
Page 1544 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

llo

he
 push offset32 ?MainPgmCoroutine
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp
 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:
 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

The code of interest in this example is at the very end, after the comment “;Main’s display” appears in
the text. The actual code sequence that corresponds to the IF statement in the main program is the fowing:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Note: you can verify that this is the code emitted by the IF statement by simply removing the IF, recom-
piling, and comparing the two assembly outputs. You’ll fi nd that the only difference between the two assem-
bly output files is the four lines above. Another way to “prove” that this is the code sequence emitted by t
HLA IF statement is to insert some comments into the assembly output file using HLA’s #ASM..#ENDASM
directives. Consider the following modification to the “t.hla” source file:

program t;

begin t;

 #asm
 ; Start of IF statement:
 #endasm

 if(eax = 0) then

 mov(1, eax);

 endif;

 #asm
 ; End if IF statement.
 #endasm

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1545

Appendix L
end t;

HLA’s #asm directive tells the compiler to simply emit everything between the #asm and #endasm key-
words directly to the assembly output file. In this example the HLA program uses these directives to emit a
pair of comments that will bracket the code of interest in the output file. Compiling this to assembly code
(and stripping out the irrelevant stuff before the HLA main program) yields the following:

 public ?HLAMain
?HLAMain proc near32

; Set up the Structured Exception Handler record
; for this program.

 push offset32 ??DfltExHndlr
 push ebp
 push offset32 ?MainPgmCoroutine
 push offset32 ??HWexcept
 push ?ExceptionPtr
 mov ?ExceptionPtr, esp
 mov dword ptr ?MainPgmCoroutine+12, esp

 pushd 0 ;No Dynamic Link.
 mov ebp, esp ;Pointer to Main's locals
 push ebp ;Main's display.
 mov [ebp+16], esp

;#asm

 ; Start of IF statement:
 ;#endasm

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

;#asm

 ; End if IF statement.
 ;#endasm

 push 0
 call dword ptr __imp__ExitProcess@4
?HLAMain endp
cseg ends
 end

This technique (embedding bracketing comments into the assembly output file) is very useful if it is not
possible to isolate a specific statement in its own source file when you want to see what HLA does during
compilation.
Page 1546 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

al
d
the

F

tate
L.3 The HLA if..then..endif Statement, Part I

Although the HLA IF statement is actually one of the more complex statements the compiler has to de
with (in terms of how it generates code), the IF statement is probably the first statement that comes to min
when something thinks about high level control structures. Furthermore, you can implement most of
other control structures if you have an IF and a GOTO (JMP) statement, so it makes sense to discuss the I
statement first. Nevertheless, there is a bit of complexity that is unnecessary at this point, so we’ll begin our
discussion with a simplified version of the IF statement; for this simplified version we’ll not consider the
ELSEIF and ELSE clauses of the IF statement.

The basic HLA IF statement uses the following syntax:

if(simple_boolean_expression) then

 << statements to execute if the expression evaluates true >>

endif;

At the machine language level, what the compiler needs to generate is code that does the following:

<< Evaluate the boolean expression >>

<< Jump around the following statements if the expression was false >>

<< statements to execute if the expression evaluates true >>

<< Jump to this point if the expression was false >>

The example in the previous section is a good demonstration of what HLA does with a simple IF s-
ment. As a reminder, the HLA program contained

 if(eax = 0) then

 mov(1, eax);

 endif;

and the HLA compiler generated the following assembly language code:

 cmp eax, 0
 jne ?1_false
 mov eax, 1
?1_false:

Evaluation of the boolean expression was accomplished with the single “cmp eax, 0” instruction. The
“jne ?1_false” instruction jumps around the “mov eax, 1” instruction (which is the statement to execute if the
expression evaluates true) if the expression evaluates false. Conversely, if EAX is equal to zero, then the
code falls through to the MOV instruction. Hence the semantics are exactly what we want for this high level
control structure.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1547

Appendix L

roperly

s

 a
HLA automatically generates a unique label to branch to for each IF statement. It does this p
even if you nest IF statements. Consider the following code:

program t;

begin t;

 if(eax > 0) then

 if(eax < 10) then

 inc(eax);

 endif;

 endif;

end t;

The code above generates the following assembly output:

 cmp eax, 0
 jna ?1_false
 cmp eax, 10
 jnb ?2_false
 inc eax
?2_false:
?1_false:

As you can tell by studying this code, the INC instruction only executes if the value in EAX is greater
than zero and less than ten.

Thus far, you can see that HLA’s code generation isn’t too bad. The code it generates for the two exam-
ples above is roughly what a good assembly language programmer would write for approximately the same
semantics.

L.4 Boolean Expressions in HLA Control Structures

The HLA IF statement and, indeed, most of the HLA control structures rely upon the evaluation of a
boolean expression in order to direct the flow of the program. Unlike high level languages, HLA restricts
boolean expressions in control structures to some very simple forms. This was done for two reasons: (1)
HLA’s design frowns upon side effects like register modification in the compiled code, and (2) HLA i
intended for use by beginning assembly language students; the restricted boolean expression model is closer
to the low level machine architecture and it forces them to start thinking in these terms right away.

With just a few exceptions, HLA’s boolean expressions are limited to what HLA can easily compile to
CMP and a condition jump instruction pair or some other simple instruction sequence. Specifically, HLA
allows the following boolean expressions:
Page 1548 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

f the
operand1 relop operand2

relop is one of:

= or == (either one, both are equivalent)
<> or != (either one, both are equivalent)
<
<=
>
>=

In the expressions above operand1 and operand2 are restricted to those operands that are legal in a CMP
instruction. This is because HLA translates expressions of this form to the two instruction sequence:

cmp(operand1, operand2);

jXX someLabel;

where “jXX” represents some condition jump whose sense is the opposite of that of the expression (e.g.,
“eax > ebx” generates a “JNA” instruction since “NA” is the opposite of “>”).

Assuming you want to compare the two operands and jump around some sequence of instructions i
relationship does not hold, HLA will generate fairly efficient code for this type of expression. One thing
you should watch out for, though, is that HLA’s high level statements (e.g., IF) make it very easy to write
code like the following:

if(i = 0) then

 ...

elseif(i = 1) then

 ...

elseif(i = 2) then

 ...
.
.
.
endif;

This code looks fairly innocuous, but the programmer who is aware of the fact that HLA emits the fol-
lowing would probably not use the code above:

 cmp(i, 0);
 jne lbl;
 .
 .
 .
lbl: cmp(i, 1);
 jne lbl2;
 .
 .
 .
lbl2: cmp(i, 2);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1549

Appendix L

e

the

a

l

 .
 .
 .

A good assembly language programmer would realize that it’s much better to load the variable “i” into a
register and compare the register in the chain of CMP instructions rather than compare the variable each
time. The high level syntax slightly obscures this problem; just one thing to be aware of.

HLA’s boolean expressions do not support conjunction (logical AND) and disjunction (logical OR).
The HLA programmer must manually synthesize expressions involving these operators. Doing so forces th
programmer to link in lower level terms, which is usually more efficient. However, there are many common
expressions involving conjunction that HLA could efficiently compile into assembly language. Perhaps
most common example is a test to see if an operand is within (or outside) a range specified by two constants.
In a HLL like C/C++ you would typically use an expression like “(value >= low_constant && value <=
high_constant)” to test this condition. HLA allows four special boolean expressions that check to see if
register or a memory location is within a specified range. The allowable expressions take the following
forms:

register in constant .. constant
register not in constant .. constant

memory in constant .. constant
memory not in constant .. constant

Here is a simple example of the first form with the code that HLA generates for the expression:

 if(eax in 1..10) then

 mov(1, ebx);

 endif;

Resulting (MASM) assembly code:

 cmp eax, 1
 jb ?1_false
 cmp eax, 10
 ja ?1_false
 mov ebx, 1
?1_false:

Once again, you can see that HLA generates reasonable assembly code without modifying any register
values. Note that if modifying the EAX register is okay, you can write slightly better code by using the fo-
lowing sequence:

 dec eax
 cmp eax, 9
 ja ?1_false
 mov ebx, 1
?1_false:

While, in general, a simplification like this is not possible you should always remember how HLA gen-
erates code for the range comparisons and decide if it is appropriate for the situation.

By the way, the “not in” form of the range comparison does generate slightly different code that the
form above. Consider the following:
Page 1550 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 if(eax not in 1..10) then

 mov(1, eax);

 endif;

HLA generates the following (MASM) assembly language code for the sequence above:

 cmp eax, 1
 jb ?2_true
 cmp eax, 10
 jna ?1_false
?2_true:
 mov eax, 1
?1_false:

As you can see, though the code is slightly different it is still exactly what you would probably write if
you were writing the low level code yourself.

HLA also allows a limited form of the boolean expression that checks to see if a character value in an
eight-bit register is a member of a character set constant or variable. These expressions use the following
general syntax:

reg8 in CSet_Constant

reg8 in CSet_Variable

reg8 not in CSet_Constant

reg8 not in CSet_Variable

These forms were included in HLA because they are so similar to the range comparison syntax. How-

ever, the code they generate may not be particularly efficient so you should avoid using these expression
forms if code speed and size need to be optimal. Consider the following:

 if(al in {'A'..'Z','a'..'z', '0'..'9'}) then

 mov(1, eax);

 endif;

This generates the following (MASM) assembly code:

strings segment page public 'data'
?1_cset byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 push eax
 movzx eax, al
 bt dword ptr ?1_cset, eax
 pop eax
 jnc ?1_false
 mov eax, 1
?1_false:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1551

Appendix L

d

of

t) if the

d of

 if
This code is rather lengthy because HLA never assumes that it cannot disturb the values in the CPU reg-
isters. So right off the bat this code has to push and pop EAX since it disturbs the value in EAX. Next, HLA
doesn’t assume that the upper three bytes of EAX already contain zero, so it zero fills them. Finally, as you
can see above, HLA has to create a 16-byte character set in memory in order to test the value in the AL reg-
ister. While this is convenient, HLA does generate a lot of code and data for such a simple looking expres-
sion. Hence, you should be careful about using boolean expressions involving character sets if speed an
space is important. At the very least, you could probably reduce the code above to something like:

 movzx(charToTest, eax);
 bt(eax, {'A'..'Z','a'..'z', '0'..'9'});
 jnc SkipMov;
 mov(1, eax);
SkipMov:

This generates code like the following:

strings segment page public 'data'
?cset_3 byte 00h,00h,00h,00h,00h,00h,0ffh,03h
 byte 0feh,0ffh,0ffh,07h,0feh,0ffh,0ffh,07h
strings ends

 movzx eax, byte ptr ?1_charToTest[0] ;charToTest
 bt dword ptr ?cset_3, eax
 jnc ?4_SkipMov
 mov eax, 1

?4_SkipMov:

As you can see, this is slightly more efficient. Fortunately, testing an eight-bit register to see if it is
within some character set (other than a simple range, which the previous syntax handles quite well) is a
fairly rare operation, so you generally don’t have to worry about the code HLA generates for this type
boolean expression.

HLA lets you specify a register name or a memory location as the only operand of a boolean expression.
For registers, HLA will use the TEST instruction to see if the register is zero or non-zero. For memory loca-
tions, HLA will use the CMP instruction to compare the memory location’s value against zero. In either
case, HLA will emit a JNE or JE instruction to branch around the code to skip (e.g., in an IF statemen
result is zero or non-zero (depending on the form of the expression).

register
!register

memory
!memory

You should not use this trick as an efficient way to test for zero or not zero in your code. The resulting
code is very confusing and difficult to follow. If a register or memory location appears as the sole operan
a boolean expression, that register or memory location should hold a boolean value (true or false). Do not
think that “if(eax) then...” is any more efficient than “if(eax<>0) then...” because HLA will actually emit
the same exact code for both statements (i.e., a TEST instruction). The second is a lot easier to understand
you’re really checking to see if EAX is not zero (rather than it contains the boolean value true), hence it is
always preferable even if it involves a little extra typing.

Example:
Page 1552 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
 if(eax != 0) then

 mov(1, ebx);

 endif;

 if(eax) then

 mov(2, ebx);

 endif;

The code above generates the following assembly instruction sequence:

 test eax,eax ;Test for zero/false.
 je ?2_false
 mov ebx, 1
?2_false:
 test eax,eax ;Test for zero/false.
 je ?3_false
 mov ebx, 2
?3_false:

Note that the pertinent code for both sequences is identical. Hence there is never a reason to sacrifice
readability for efficiency in this particular case.

The last form of boolean expression that HLA allows is a flag designation. HLA uses symbols like @c,
@nc, @z, and @nz to denote the use of one of the flag settings in the CPU FLAGS register. HLA supports
the use of the following flag names in a boolean expression:

@c, @nc, @o, @no, @z, @nz, @s, @ns,
@a, @na, @ae, @nae, @b, @nb, @be, @nbe,
@l, @nl, @g, @ne, @le, @nle, @ge, @nge,
@e, @ne

Whenever HLA encounters a flag name in a boolean expression, it efficiently compiles the expression
into a single conditional jump instruction. So the following IF statement’s expression compiles to a single
instruction:

if(@c) then

 << do this if the carry flag is set >>

endif;

The above code is completely equivalent to the sequence:

 jnc SkipStmts;

 << do this if the carry flag is set >>

SkipStmts:

The former version, however, is more readable so you should use the IF form wherever practical.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1553

Appendix L

 to the

A

; this
L.5 The JT/JF Pseudo-Instructions

The JT (jump if true) and JF (jump if false) pseudo-instructions take a boolean expression and a label.
These instructions compile into a conditional jump instruction (or sequence of instructions) that jump
target label if the specified boolean expression evaluates false. The compilation of these two statements is
almost exactly as described for boolean expressions in the previous section.

The following are a couple of examples that show the usage and code generation for these two state-
ments.

lbl2:
 jt(eax > 10) label;
label:
 jf(ebx = 10) lbl2;

; Translated Code:

?2_lbl2:

cmp eax, 10
ja ?4_label

?4_label:

cmp ebx, 10
jne ?2_lbl2

L.6 The HLA if..then..elseif..else..endif Statement, Part II

With the discussion of boolean expressions out of the way, we can return to the discussion of the HL
IF statement and expand on the material presented earlier. There are two main topics to consider: the inclu-
sion of the ELSEIF and ELSE clauses and the HLA hybrid IF statement. This section will discuss these
additions.

The ELSE clause is the easiest option to describe, so we’ll start there. Consider the following short
HLA code fragment:

 if(eax < 10) then

 mov(1, ebx);

 else

 mov(0, ebx);

 endif;

HLA’s code generation algorithm emits a JMP instruction upon encountering the ELSE clause
JMP transfers control to the first statement following the ENDIF clause. The other difference between the
IF/ELSE/ENDIF and the IF/ENDIF statement is the fact that a false expression evaluation transfers control
to the ELSE clause rather than to the first statement following the ENDIF. When HLA compiles the code
above, it generates machine code like the following:
Page 1554 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

ent
r per

the

e

 cmp eax, 10
 jnb ?2_false ;Branch to ELSE section if false

 mov ebx, 1
 jmp ?2_endif ;Skip over ELSE section

; This is the else section:

?2_false:
 mov ebx, 0
?2_endif:

About the only way you can improve upon HLA’s code generation sequence for an IF/ELSE statem
is with knowledge of how the program will operate. In some rare cases you can generate slightly bette-
forming code by moving the ELSE section somewhere else in the program and letting the THEN section fall
straight through to the statement following the ENDIF (of course, the ELSE section must jump back to
first statement after the ENDIF if you do this). This scheme will be slightly faster if the boolean expression
evaluates true most of the time. Generally, though, this technique is a bit extreme.

The ELSEIF clause, just as its name suggests, has many of the attributes of an ELSE and and IF claus
in the IF statement. Like the ELSE clause, the IF statement will jump to an ELSEIF clause (or the previous
ELSEIF clause will jump to the current ELSEIF clause) if the previous boolean expression evaluates false.
Like the IF clause, the ELSEIF clause will evaluate a boolean expression and transfer control to the follow-
ing ELSEIF, ELSE, or ENDIF clause if the expression evaluates false; the code falls through to the THEN
section of the ELSEIF clause if the expression evaluates true. The following examples demonstrate how
HLA generates code for various forms of the IF..ELSEIF.. statement:

Single ELSEIF clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
?3_false:
?2_endif:

Single ELSEIF clause with an ELSE clause:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1555

Appendix L
 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 else

 mov(2, ebx);

 endif;

; Converted code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
Page 1556 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

an

bly lan
s

?3_false:
 mov ebx, 2
?2_endif:

IF statement with two ELSEIF clauses and an ELSE clause:

 if(eax < 10) then

 mov(1, ebx);

 elseif(eax > 10) then

 mov(0, ebx);

 elseif(eax = 5) then

 mov(2, ebx);

 else

 mov(3, ebx);

 endif;

; Translated code:

 cmp eax, 10
 jnb ?2_false
 mov ebx, 1
 jmp ?2_endif
?2_false:
 cmp eax, 10
 jna ?3_false
 mov ebx, 0
 jmp ?2_endif
?3_false:
 cmp eax, 5
 jne ?4_false
 mov ebx, 2
 jmp ?2_endif
?4_false:
 mov ebx, 3
?2_endif:

This code generation algorithm generalizes to any number of ELSEIF clauses. If you need to see
example of an IF statement with more than two ELSEIF clauses, feel free to run a short example through the
HLA compiler to see the result.

In addition to processing boolean expressions, the HLA IF statement supports a hybrid syntax that lets
you combine the structured nature of the IF statement with the unstructured nature of typical assem-
guage control flow. The hybrid form gives you almost complete control over the code generation proces
without completely sacrificing the readability of an IF statement. The following is a typical example of this
form of the IF statement:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1557

Appendix L

e

an

,

 if
 (#{
 cmp(eax, 10);
 jna false;
 }#) then

 mov(0, eax);

 endif;

; The above generates the following assembly code:

 cmp eax, 10
 jna ?2_false
?2_true:
 mov eax, 0
?2_false:

Of course, the hybrid IF statement fully supports ELSE and ELSEIF clauses (in fact, the IF and ELSEIF
clauses can have a potpourri of hybrid or traditional boolean expression forms). The hybrid forms, since
they let you specify the sequence of instructions to compile, put the issue of efficiency squarely in your lap.
About the only contribution that HLA makes to the inefficiency of the program is the insertion of a JMP
instruction to skip over ELSEIF and ELSE clauses.

Although the hybrid form of the IF statement lets you write very efficient code that is more readabl
than the traditional “compare and jump” sequence, you should keep in mind that the hybrid form is defi-
nitely more difficult to read and comprehend than the IF statement with boolean expressions. Therefore, if
the HLA compiler generates reasonable code with a boolean expression then by all means use the boole
expression form; it will probably be easier to read.

L.7 The While Statement

The only difference between an IF statement and a WHILE loop is a single JMP instruction. Of course
with an IF and a JMP you can simulate most control structures, the WHILE loop is probably the most typical
example of this. The typical translation from WHILE to IF/JMP takes the following form:

while(expr) do

 << statements >>

endwhile;

// The above translates to:

label:
 if(expr) then

 << statements >>
 jmp label;

 endif;
Page 1558 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

a

ribed
Experienced assembly language programmers know that there is a slightly more efficient implementa-
tion if it is likely that the boolean expression is true the first time the program encounters the loop. That
translation takes the following form:

 jmp testlabel;
label:

 << statements >>

testlabel:
 JT(expr) label; // Note: JT means jump if expression is true.

This form contains exactly the same number of instructions as the previous translation. The difference
is that a JMP instruction was moved out of the loop so that it executes only once (rather than on each iter-
tion of the loop). So this is slightly more efficient than the previous translation. HLA uses this conversion
algorithm for WHILE loops with standard boolean expressions.

L.8 repeat..until

L.9 for..endfor

L.10 forever..endfor

L.11 break, breakif

L.12 continue, continueif

L.13 begin..end, exit, exitif

L.14 foreach..endfor

L.15 try..unprotect..exception..anyexception..endtry, raise

Editorial Note: This document is a work in progress. At some future date I will finish the sections above.
Until then, use the HLA “-s” compiler option to emit MASM code and study the MASM output as desc
in this appendix.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1559

Appendix L
Page 1560 © 2001, By Randall Hyde Beta Draft - Do not distribute

	HLA Code Generation for HLL Statements Appendix L
	L.1 The HLA Standard Library
	L.2 Compiling to MASM Code -- The Final Word
	L.3 The HLA if..then..endif Statement, Part I
	L.4 Boolean Expressions in HLA Control Structures
	L.5 The JT/JF Pseudo-Instructions
	L.6 The HLA if..then..elseif..else..endif Statement, Part II
	L.7 The While Statement
	L.8 repeat..until
	L.9 for..endfor
	L.10 forever..endfor
	L.11 break, breakif
	L.12 continue, continueif
	L.13 begin..end, exit, exitif
	L.14 foreach..endfor
	L.15 try..unprotect..exception..anyexception..endtry, raise

