HLA Code Generation for HLL Statements

HLA Code Generation for HLL Statements Appendix L

One of the principal adntages of using assembly languager tiigh level languages is the control that
assembly praides. High lgel languages (HLLS) represent an abstraction of the underlying &adw
Those who write HLL code @& up this control inxehange for the engineerindiefencies enjped by HLL
programmers. Some aalwed HLL programmers (who Ve a good mastery of the underlying machine
architecture) are capable of writingidy efficient programs by recognizing what the compiler does with
various high lgel control constructs and choosing the appropriate construct to emit the machine gode the
want. While this “low-level programming in a highVel language” does lga the programmer at the megrc
of the compilewwriter, it does preide a mechanism whereby HLL programmers can write mdiaesft
code by chosing those HLL constructs that compile irftoiefit machine code.

Although the High Leel Assembler (HLA) allavs a programmer toavk at a ery low level, HLA also
provides structured high-el control constructs that let assembly programmers use Heyleércode to
help male their assembly code more readabiiaose assembly language programmers who needafat) w
to exercise maximum controlver their programs will probably amt to a&oid using these statements since
they tend to obscure what is happening at a reallylével. At the other gtreme, those who euld alvays
use these highel control structures might question if yheeally want to use assembly language in their
applications; after all, if there writing high leel code, perhaps theshould use a highvel language and
take adwantage of optimizing technology and othandy features found in modern compilers. Between
these tw extremes lies the typical assembly language programiflee one who realizes that most code
doesnt need to be sup&fficient and is more interested in produely producing lots of softare rather
than worrying about hev mary CPU gcles the one-time initialization code is going to consume. HLA is
perfect for this type of programmer because it lets yorkwt a high leel of abstraction when writing code
whose performance ignan issue and it lets youork at a lav level of abstraction when avking on code
that requires special attention.

Between code whose performance doesdtter and code whose performance is critical lies a big gray
region: code that should be reasonalalgtflut speed isii’'the number one prioritySuch code needs to be
reasonably readable, maintainable, and as free of defects as possible. Imoatserc@de that is a good
candidate for using highvel control and data structures if their use is reasonafityesit.

Unlike various HLL compilers, HLA does not (yet!) attempt to optimize the code that you Whis.
puts HLA at a disadantage: it relies on the optimizer between your ears rather than the one supplied with
the compiler If you write slopy high level code in HLA then a HLL ersion of the same program will
probably be more &tient if it is compiled with a decent HLL compileFor code where performance mat
ters, this can be a disturbingzedation (you took the time and bother to write the code in assembinb
equialent C/C++ program isaéter). The purpose of this appendix is to describe KHL&ode generation in
detail so you can intelligently choose when to use dlgh level features and when you should stick with
low-level assembly language.

L.1 The HLA Standard Library

The HLA Standard Library as designed to makiearning assembly language programming easy for
beginning programmersAlthough the code in the library igrterrible, \ery little efort was made to write
top-performing code in the libraryAt some point in the future this may change askwon the library
progresses, Ui if you're looking to write ery high-performance code you should probablyic calling
routines in the HLA Standard Library from (speed) critical sections of your program.

Don't get the impression from the preus paragraph that H & Standard Library contains arith of
slow-poke routines, hwever. Mary of the HLA Standard Library routines use decent algorithms and data
structures so tlyeperform quite well in typical situations.oFexample, the HLA string format isaf more
efficient than strings in C/C++The world’s best C/C+-strlen routine is almost alays going to be skeer
than HLASstr.len function. This is because HLA uses a betterwigfin for string data than C/C++, it has lit
tle to do with the actual implementation of #telen code. This is not to say that HLAstr.len routine can
not be impreed; hut the routine is ery fast already

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel541

Appendix L

One problem with using the HLA Standard Library is the frame of mind it fosters duringvitlegde
ment of a programThe HLA Standard Library is strongly io#nced by the C/C++ Standard Library and
libraries common in other highvel languagesWhile the HLA Standard Library is aomderful tool that
can help you write assembly codestier than\er before, it also encourages you to think at a highvet.le
As ary expert assembly language programmer can tell you, the real tsepiefising assembly language
occur only when you “think in assembly” rather than in a higklllnguage. No matter Wweefficient the
routines in the Standard Library happen to be, if gotwriting C++ programs with M@ instructions” the
result is going to be little better than writing the code in C++ ¢girbeith.

One unfortunate aspect of the HLA Standard Library is that it encourages you to think at a igher le
and youll often miss adr more dicient lav-level solution as a resulA good example is the set of string
routines in the HLA Standard Libraryif you use those routinesyen if they were written as &tiently as
possible, you may not be writing thestest possible program you can becausevgdumited your thinking
to string objects which are a highevééabstraction. If you did not txa the HLA Standard Library laying
around and you had to do all the character string manipulation yourself, you might choose to treat the objects
as character arrays in memofiyhis change of perspeeti can produce dramatic performance improent
under certain circumstances.

The bottom line is this: the HLA Standard Library is@nderful collection of routines and thiee not
particularly ineficient. They’'re very easy and ceenient to use. Heever, dont let the HLA Standard
Library lull you into choosing data structures or algorithms that are not the most appropriateéor segi
tion of your program.

L.2

Compiling to MASM Code -- The Final Word

The remainder of this document will discuss, in general, HhA translates arious HLL-style state
ments into assembly code. Sometimes a general discussion may vidé mmecit answers you need
about HLAs code generation capabilities. Should yoweha specifi question about o HLA generates
code with respect to awgin code sequence, you caways run the compiler and obserthe output it pro
duces.To do this, it is best to create a simple program that contains only the construct you wish to study and
compile that program to assembly coder &le, consider the follang very simple HLA program:

programt;
begin t;
if(eax =0) then
nmov(1, eax);
endi f;
end t;

If you compile this program using the command windmompt “hla -s t.hla” then HLA produces a
(MASM) file similar to the follaving®:

i f @/ersion |t 612
. 586

el se

. 686

. mx

. Xnmm

1. Because the code generator in HLA is changing all the time, this file may not reflect an accurate compilation of the above
HLA code. However, the concepts will be the same.

Pagel542 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

endi f
.nodel flat, syscal
of f set 32 equ <of fset flat:>
assume fs:nothing
?ExceptionPtr equ <(dword ptr fs:[0])>

ext erndef ??HWexcept: near 32
ext erndef ??Rai se: near 32

std_out put _hndl equ -11
externdef _ inp_ ExitProcess@: dword

externdef _ inp__ Get StdHandl e@: dword
externdef __inp_ WiteFile@O0: dword

cseg segnent page public 'code'

cseg ends

readonl y segnent page public 'data

readonly ends

strings segnent page public 'data'

strings ends

dseg segnent page public 'data'

dseg ends

bssseg segnent page public 'data'

bssseg ends

strings segnent page public 'data'

?df It msg byt e "Unhandl ed exception error.", 13,10
?df I t msgsi ze equ 34

?absnsg byt e "Attenpted call of abstract procedure or nethod.", 13,10
?absnsgsi ze equ 55

strings ends

dseg segnent page public 'data'

2df mritten wor d 0

?df nSt dQut dwor d 0

public ?Mai nPgnCorouti ne
?Mai nPgntCor outine byte 0 dup (?)
dwor d ?Mai nPgnVMr

dwor d 0 ; Current SP

dwor d 0 ; Pointer to stack

dwor d 0 ; Except i onCont ext

dwor d 0 ; Pointer to last caller
?Mai nPgnVvMr dwor d ?2Qui t Mai n
dseg ends
cseg segnent page public 'code'
?Qui t Mai n proc near 32

pushd 1

call dword ptr _ inp__ ExitProcess@
?Qui t Mai n endp
cseg ends

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel543

Appendix L
cseg segnent page public 'code'
??Df | t EXHndl r proc near 32

pushd std_out put _hnd

call __inmp__ CGetStdHandl e@

nov ?df n5t dQut, eax

pushd 0 ;| pOver | apped

pushd of fset32 ?2dfmwitten ; BytesWitten
pushd ?df I t megsi ze ; NNunber OF Byt esToWite
pushd of fset 32 2dfl tnsg ; | pBuf fer
pushd ?df nt dQut ;hFile

cal | _inp_WiteFile@0

pushd 0

call dword ptr _ inp__ ExitProcess@

??2Df | t ExHndl r endp

public ??Raise
??Rai se proc near 32

jmp ??2Df | t ExXHndl r
??Rai se endp

public ??HW\except

??HW\except proc near 32
nov eax, 1
ret

??HWxcept endp

?abstract proc near 32

pushd std_out put _hnd

call __inmp__CGetStdHandl e@

nov ?df n5t dQut, eax

pushd 0 ;| pOver | apped

pushd of fset32 ?2dfmwitten ; BytesWitten

pushd ?absnsgsi ze ; NNunmber OF Byt esToWite

pushd of f set 32 ?absnsg ; | pBuf fer

pushd ?df nt dQut ;hFile

cal | _inmp_WiteFile@0

pushd 0

call dword ptr _ inp_ ExitProcess@
?abstract endp

public ?HLAMai n
?HLAMaI n proc near 32

; Set up the Structured Exception Handl er record
; for this program

push of fset 32 ??Df | t ExHndlI r
push ebp

Pagel544 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

push of f set 32 ?Mai nPgnCor out i ne
push of f set 32 ??HWexcept
push ?ExceptionPtr

nov ?ExceptionPtr, esp
nov dword ptr ?Mai nPgnCoroutine+12,
pushd 0 ; No Dynami c Link
nov ebp, esp ; Pointer to Main's locals
push ebp ; Main's display.
nmov [ebp+16], esp
cnp eax, O
j ne ?1_fal se
nov eax, 1
?1_fal se:
push 0
call dword ptr _ inp__ ExitProcess@
?HLAMai n endp
cseg ends
end

The code of interest in thix@ample is at theary end, after the comment “;Masndisplay” appears in

the text. The actual code sequence that corresponds to the IF statement in the main program iwitge follo

cnp eax, O
j ne ?1 false
nov eax, 1
?1 false:

Note: you can erify that this is the code emitted by the IF statement by simplyviemthe IF recom
piling, and comparing the mvassembly outputstou’ll find that the only dieérence between the tvassem

bly output fles is the four lines alve. Another vay to “prove” that this is the code sequence emitted by the

HLA IF statement is to insert some comments into the assembly olgpugifig HLAs #ASM. . #ENASM

directives. Consider the foleing modification to the “t.hla” sourcelé:

program-t;

begin t;
#asm
: Start of |F statement:
#endasm

if(eax = 0) then

nmov(1, eax);

endi f;
#asm
; BEnd if |IF statenent.
#endasm
Beta Draft - Do not distribute © 2001, By Randall Hyde

Pagel545

Appendix L

end t;

HLA's #asm directe tells the compiler to simply emiverything between the #asm and #endaeyn k
words directly to the assembly outpuéfi In this @ample the HLA program uses these dinexgito emit a
pair of comments that will braek the code of interest in the outpulé.fi Compiling this to assembly code
(and stripping out the irrefant stuf before the HLA main program) yields the failimg:

public ?HLAMai n
?HLAMaI n proc near 32

; Set up the Structured Exception Handler record
; for this program

push of fset 32 ??Df | t ExHndl r
push ebp

push of f set 32 ?Mai nPgnCor out i ne
push of f set 32 ??HWexcept

push ?ExceptionPtr

nov ?ExceptionPtr, esp
nov dword ptr ?Mai nPgnCor outi ne+l12, esp
pushd 0 ; No Dynam ¢ Link
nov ebp, esp ;Pointer to Main's |ocals
push ebp ; Main's display.
nov [ebp+16], esp
; #asm
; Start of IF statement:
; #endasm
cnp eax, O
j ne ?1 false
nov eax, 1
?1 fal se:
; #asm
; End if IF statement.
; #endasm
push 0
cal | dword ptr __inp__ ExitProcess@
?HLAMaI n endp
cseg ends
end

This technique (embedding bratikng comments into the assembly outplel) fis very useful if it is not
possible to isolate a specifstatement in itsvan source fe when you want to see what HLA does during
compilation.

Pagel546 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

L.3

The HLA if..then..endif Statement, Part |

Although the HLA IF statement is actually one of the more coxgiltements the compiler has to deal
with (in terms of hw it generates code), the IF statement is probably iétestatement that comes to mind
when something thinks about higtvéé control structures. Furthermore, you can implement most of the
other control structures if youvaan IF and a GOD (JMP) statement, so it mek sense to discuss the IF
statement fst. Nevertheless, there is a bit of comxitg that is unnecessary at this point, solingegin our
discussion with a simpliid \ersion of the IF statement; for this simg@diersion well not consider the
ELSEIF and ELSE clauses of the IF statement.

The basic HLA IF statement uses the faillog syntax:

if(sinple_bool ean_expression) then
<< statenents to execute if the expression eval uates true >>

endif;

At the machine languageviel, what the compiler needs to generate is code that does thdrigtlo

<< Eval uat e the bool ean expressi on >>

<< Junp around the follow ng statenents if the expression was fal se >>
<< statenents to execute if the expression eval uates true >>

<< Junp to this point if the expression was fal se >>

The exkample in the préous section is a good demonstration of what HLA does with a simple IF state
ment. As a reminderthe HLA program contained

if(eax =0) then
nmov(1, eax);
endi f;

and the HLA compiler generated the foling assembly language code:

cnp eax, 0

j ne ?1 fal se

nov eax, 1
?1 fal se:

Evaluation of the boolearxpression was accomplished with the single “cmp eax, 0” instructidhe
“ine ?1_flse” instruction jumps around the “meax, 1" instruction (which is the statementxeaute if the
expression ealuates true) if thexpression ealuates dlse. Cowmersely if EAX is equal to zero, then the
code #lls through to the M@ instruction. Hence the semantics axaaly what we \ant for this high leel
control structure.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel547

Appendix L

HLA automatically generates a unique label to branch to for each IF statement. It does this properly
even if you nest IF statements. Consider the falg code:

programt;
begin t;
if(eax >0) then
if(eax <10) then
inc(eax);
endi f;

endi f;

end t;

The code abee generates the folldng assembly output:

cnp eax, 0

j na ?1 fal se
cnp eax, 10
jnb ?2_fal se
i nc eax

?2 fal se:

?1 fal se:

As you can tell by studying this code, the INC instruction orbcates if the &lue in EAX is greater
than zero and less than ten.

Thus fr, you can see that HL#code generation idrtoo bad. The code it generates for thechexam
ples abwe is roughly what a good assembly language programmadwrite for approximately the same
semantics.

L.4 Boolean Expressions in HLA Control Structures

The HLA IF statement and, indeed, most of the HLA control structures rely upowatnat®n of a
boolean gpression in order to direct thewl of the program. Unli high lerel languages, HLA restricts
boolean gpressions in control structures to sonegyvsimple forms.This was done for tw reasons: (1)
HLA's design fravns upon side é&fcts like register modifcation in the compiled code, and (2) HLA is
intended for use by b@éning assembly language students; the restricted bootpagssion model is closer
to the lav level machine architecture and it forces them to start thinking in these termsargght a

With just a fev exceptions, HLAs boolean xpressions are limited to what HLA can easily compile to a
CMP and a condition jump instruction pair or some other simple instruction sequence.c&petiiA
allows the follaving boolean epressions:

Pagel548 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
operandl rel op operand2
relop is one of:

= or == (either one, both are equival ent)
< or != (either one, both are equival ent)

In the xpressions ah@ operangand operanglare restricted to those operands that ayal ile a CMP
instruction. This is because HLA translatespeessions of this form to the évinstruction sequence:

cp(operand,, operand,);
j XX soneLabel ;

where “j}XX" represents some condition jump whose sense is the opposite of thabqirdssien (e.g.,
“eax > ebx” generates a “Minstruction since “M\" is the opposite of “>").

Assuming you wnt to compare the twoperands and jump around some sequence of instructions if the
relationship does not hold, HLA will generatgrfy efficient code for this type ofxpression. One thing
you should wvatch out foy though, is that HLA high level statements (e.g., IF) malkt very easy to write
code lile the follaving:

if(i =0) then
elseif(i =1) then
elseif(i =2) then
endif;

This code looksdirly innocuous, bt the programmer who isvare of the éct that HLA emits the fel
lowing would probably not use the code abp

cnp(i, 0);
jne Ibl;

Ibl: cnp(i, 1);
jne |bl2;

Ibl2: cnp(i, 2);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel549

Appendix L

A good assembly language programmeuld realize that i much better to load thanable

i” into a

register and compare thegister in the chain of CMP instructions rather than comparedhiable each
time. The high leel syntax slightly obscures this problem; just one thing toMageaof.

HLA’s boolean xpressions do not support conjunction (logié&dlD) and disjunction (logical OR).
The HLA programmer must manually synthesixpressions ivolving these operators. Doing so forces the
programmer to link in hver level terms, which is usually morefigient. Havever, there are mgncommon
expressions iwolving conjunction that HLA could &€iently compile into assembly language. Perhaps the
most commonxample is a test to see if an operand is within (or outside) a rangeexpbygitivo constants.

In a HLL like C/C++ you wuld typically use anxgression lile “(value >= lav_constant && alue <=
high_constant)” to test this condition. HLA ails four special boolearxpressions that check to see if a
register or a memory location is within a spemifirange. The allavable &pressions tak the follaving

forms:

regi ster in constant ..
regi ster not in constant ..

menory in constant ..
menory not in constant ..

const ant
const ant

const ant

const ant

Here is a simplexample of the fist form with the code that HLA generates for tkpression:

if(eax in 1..10) then

nmov(1, ebx);

endi f;

Resulting (MASM) assembly code:

cnp

ib

cnp

ja

nov
?1 fal se:

eax, 1
?1 fal se
eax, 10
?1 fal se
ebx, 1

Once agin, you can see that HLA generates reasonable assembly code without modifyiegjsier
values. Note that if modifying the EAXgister is okayyou can write slightly better code by using the fol

lowing sequence:

dec

cnp
ja

?1 fal se:

eax
eax, 9
?1 false
ebx, 1

While, in general, a simplifation like this is not possible you shoulavalys remember o HLA gen
erates code for the range comparisons and decide if it is appropriate for the situation.

By the way, the “not in” form of the range comparison does generate slightbretit code that the
form abave. Consider the follging:

Pagel550

© 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

if(eax not in 1..10) then
mov(1, eax);
endif;

HLA generates the folleing (MASM) assembly language code for the sequenceeabo

cnp eax, 1

ib ?2 true

cnp eax, 10

j na ?1 fal se
?2_true:

mov eax, 1
?1 false:

As you can see, though the code is slightlfed#nt it is still actly what you wuld probably write if
you were writing the v level code yourself.

HLA also allavs a limited form of the booleaxgression that checks to see if a charachdwerin an
eight-bit reister is a member of a character set constanaiable. These gpressions use the follong
general syntax:

regg in CSet_Constant
regg in CSet_Variable

regg not in CSet_Constant
regg not in CSet_Variable

These forms were included in HLA becauseythee so similar to the range comparison syntaxw-Ho
ever, the code thegenerate may not be particulariffieient so you shouldvaid using thesex@ression
forms if code speed and size need to be optimal. Consider theifgjio

if(al in{"A.."Z,'a.."z", '0'.."9'}) then
nmov(1, eax);
endi f;

This generates the follong (MASM) assembly code:

strings segment page public 'data'
?1 cset byt e 00h, 00h, 00h, 00h, 00h, 00h, Of f h, 03h
byte 0f eh, Of f h, Of f h, 07h, Of eh, Of f h, Of f h, 07h
strings ends
push eax
novzx eax, al
bt dword ptr ?1 _cset, eax
pop eax
jnc ?1 fal se
mov eax, 1
?1 fal se:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel551

Appendix L

This code is rather lengttbecause HLA neer assumes that it cannot disturb th&ies in the CPU g
isters. So right dthe bat this code has to push and pop EAX since it disturbsiieimn EAX. Net, HLA
doesnt assume that the upper three bytes of EAX already contain zero, so itiz¢heifn. Finallyas you
can see ah@, HLA has to create a 16-byte character set in memory in order to teatubénvtheAL reg-
ister While this is comenient, HLA does generate a lot of code and data for such a simple loggieg e
sion. Hence, you should be careful about using boobgaregsions ivolving character sets if speed and
space is importantAt the \ery least, you could probably reduce the codealbo something li&:

novzx(charToTest, eax);
bt(eax, {'A.."Z ,'a.."2", '0..'9});
jnc Ski pMov;
nov(1l, eax);
Ski pMov:

This generates code ékhe follaving:

strings segnent page public 'data'
?cset _3 byte 00h, 00h, 00h, 00h, 00h, 00h, Of f h, 03h

byte Ofeh, Of f h, Of f h, 07h, Of eh, Of f h, Of f h, O7h
strings ends

novzx eax, byte ptr ?1 _charToTest[0] ;charToTest

bt dword ptr ?cset_3, eax
jnc ?4_Ski pMov
nmov eax, 1

?4_Ski pMov:

As you can see, this is slightly mordigent. Fortunately testing an eight-bit gister to see if it is
within some character set (other than a simple range, which theysesyntax handles quite well) is a
fairly rare operation, so you generally dohé&ve to worry about the code HLA generates for this type of
boolean gpression.

HLA lets you specify a igister name or a memory location as the only operand of a boale@ssion.
For registers, HLA will use th@EST instruction to see if thegister is zero or non-zero.oFmemory loca
tions, HLA will use the CMP instruction to compare the memory locatiamiue aginst zero. In either
case, HLA will emit a JNE or JE instruction to branch around the code to skip (e.g., in an IF statement) if the
result is zero or non-zero (depending on the form of xpeegsion).

register
I regi ster

menory
! nenory

You should not use this trick as afi@ént way to test for zero or not zero in your codée resulting
code is ery confusing and ditcult to follow. If a register or memory location appears as the sole operand of
a boolean gression, that gister or memory location should hold a boolealu#g (true ordlse). Do not
think that “if(eax) then'.is any more eficient than “if(eax<>0jhen..” because HLA will actually emit
the samexact code for both statements (i.eTEST instruction).The second is a lot easier to understand if
you're really checking to see if EAX is not zero (rather than it contains the bo@kentrue), hence it is
always preferablewven if it involves a little &tra typing.

Example:

Pagel552 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
if(eax '=0) then
mov(1, ebx);
endi f;
if(eax) then
mov(2, ebx);
endi f;

The code abee generates the folldng assembly instruction sequence:

t est eax, eax ; Test for zero/fal se.
je ?2_fal se
nov ebx, 1

?2 fal se:
t est eax, eax ; Test for zero/fal se.
je ?3_fal se
nmov ebx, 2

?3 fal se:

Note that the pertinent code for both sequences is identical. Hence thereria neason to sacué
readability for eficieng in this particular case.

The last form of boolearxpression that HLA allws is a fhg designation. HLA uses symbolsdil@c,
@nc, @z, and @nz to denote the use of one ofdgeséttings in the CPU FIGS ragyister HLA supports
the use of the folleing flag names in a boolearpression:

@, @c, @, @o, @, @z, @, @s,

@, @a, @e, @ae, @, @b, @e, @be,
@, @, @ e, @e, @le, @e, @ge,
@, @e

Whenerer HLA encounters adly name in a booleaxmression, it dfciently compiles thex@ression
into a single conditional jump instruction. So the failog IF statemen$’ expression compiles to a single
instruction:

if(@) then
<< do this if the carry flag is set >>
endi f;

The aboe code is completely equailent to the sequence:

jnc SkipStnts;
<< do this if the carry flag is set >>
Ski pStni s:

The former ersion, havever, is more readable so you should use the IF form whepractical.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel553

Appendix L

L.5 The JT/JF Pseudo-Instructions

The JT (jump if true) and JF (jump #lse) pseudo-instructions tak booleanxpression and a label.
These instructions compile into a conditional jump instruction (or sequence of instructions) that jump to the
target label if the spec#d booleanxpression ealuates dlse. The compilation of these twstatements is
almost gactly as described for booleaxpeessions in the pvéus section.

The following are a couple ofxamples that shv the usage and code generation for thesedtate
ments.

I bl 2:

jt(eax > 10) | abel
| abel :

jf(ebx =10) Ibl2

; Transl at ed Code
?2 1 bl 2:
cnp eax, 10
ja ?4_| abe
?4 | abel

cnp ebx, 10
jne ?2_1bl2

L.6 The HLA if..then..elseif..else..endif Statement, Part I

With the discussion of booleammessions out of theay, we can return to the discussion of the HLA
IF statement andx@and on the material presented earlignere are tw main topics to consider: the inelu
sion of the ELSEIF and ELSE clauses and the HiyArid IF statement.This section will discuss these
additions.

The ELSE clause is the easiest option to describe, dbstaat there. Consider the folling short
HLA code fragment:

if(eax < 10) then
mov(1, ebx);
el se
mov(0, ebx);
endi f;

HLA's code generation algorithm emits a JMP instruction upon encountering the ELSE clause; this
JMP transfers control to thedt statement follwing the ENDIF clauseThe other diference between the
IF/ELSE/ENDIF and the IF/ENDIF statement is thetfthat adlse epression ealuation transfers control
to the ELSE clause rather than to thetfstatement follwing the ENDIEF When HLA compiles the code
above, it generates machine codeelithe follaving:

Pagel554 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

cnp eax, 10

j nb ?2 false ;Branch to ELSE section if false
nmov ebx, 1
jnp ?2_endi f ; Skip over ELSE section

; This is the el se section:

?2_fal se:
nmov ebx, O
?2 endif:

About the only vay you can impree upon HLAs code generation sequence for an IF/ELSE statement
is with knavledge of hav the program will operate. In some rare cases you can generate slightly better per
forming code by meaing the ELSE section soméere else in the program and letting TH€EN section &ll
straight through to the statement foliog the ENDIF (of course, the ELSE section must jump back to the
first statement after the ENDIF if you do thihis scheme will be slightlyakter if the boolearnxpression
evaluates true most of the time. Generdliypugh, this technique is a bitteeme.

The ELSEIF clause, just as its name suggests, hag ohdme attrilites of an ELSE and and IF clause
in the IF statement. Lé&the ELSE clause, the IF statement will jump to an ELSEIF clause (or theugre
ELSEIF clause will jump to the current ELSEIF clause) if theviptes boolean xpression ealuates dlse.
Like the IF clause, the ELSEIF clause wilakiate a boolearxpression and transfer control to the fallo
ing ELSEIF, ELSE, or ENDIF clause if thexpression ealuates dlse; the codeafls through to th&HEN
section of the ELSEIF clause if thgpeession ealuates true.The folloving examples demonstrate Wwo
HLA generates code foravious forms of the IFEELSEIF. statement:

Single ELSEIF clause:

if(eax <10) then
mov(1, ebx);

el seif(eax > 10) then
nmov(0, ebx);

endi f;

; Transl ated code:

cnp eax, 10

jnb ?2_fal se
nmov ebx, 1
jnp ?2_endi f
?2 fal se:
cnp eax, 10
jna ?3_fal se
nmov ebx, O
?3 fal se:
?2 endif:

Single ELSEIF clause with an ELSE clause:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel555

Appendix L
if(eax < 10) then
mov(1, ebx);
elseif(eax > 10) then
nmov(0, ebx);
el se
mov(2, ebx);

endi f;

; Converted code

cnp eax, 10

jnb ?2 fal se

nov ebx, 1

jnp ?2_endi f
?2_fal se:

cnp eax, 10

jna ?3_fal se

nov ebx, 0

jnp ?2_endi f
?3 _fal se:

mov ebx, 2
?2 endif:

IF statement with tey ELSEIF clauses:

if(eax <10) then
nmov(1, ebx);

elseif(eax > 10) then
mov(0, ebx);

elseif(eax =5) then
mov(2, ebx);

endi f;

; Transl ated code

cnp eax, 10

jnb ?2_fal se

nmov ebx, 1

jnp ?2 endi f
?2 fal se:

cnp eax, 10

jna ?3_fal se

nmov ebx, O

jnp ?2_endi f

Pagel556 © 2001, By Randall Hyde

Beta Draft - Do not distribute

HLA Code Generation for HLL Statements
?3_fal se:

nov ebx, 2
?2_endif:

IF statement with tew ELSEIF clauses and an ELSE clause:

if(eax <10) then
mov(1, ebx);
elseif(eax > 10) then
mov(0, ebx);
elseif(eax =5) then
nmov(2, ebx);
el se
mov(3, ebx);
endif;

; Transl ated code:

cnp eax, 10

jnb ?2 fal se

nov ebx, 1

jnp ?2_endi f
?2_fal se:

cnp eax, 10

jna ?3_fal se

nov ebx, O

jnp ?2_endi f
?3_fal se:

cnp eax, 5

j ne ?4 fal se

nmov ebx, 2

jnp ?2_endi f
?4 fal se:

nov ebx, 3
?2_endif:

This code generation algorithm generalizes tp rumber of ELSEIF clauses. If you need to see an
example of an IF statement with more thaw L SEIF clauses, feel free to run a shagreple through the
HLA compiler to see the result.

In addition to processing booleaxpeessions, the HLA IF statement supportylrid syntax that lets
you combine the structured nature of the IF statement with the unstructured nature of typical assembly lan
guage control eiw. The hybrid form gives you almost complete controles the code generation process
without completely sacrifing the readability of an IF statemefithe followving is a typical gample of this
form of the IF statement:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel557

Appendix L

if

(#
cnp(eax, 10);
jna fal se;

}#) then

nov(0, eax);

endi f;

; The above generates the foll ow ng assenbly code:

cnp eax, 10

j na ?2_fal se
?2_true:

mov eax, O
?2 fal se:

Of course, theybrid IF statement fully supports ELSE and ELSEIF clausesin the IF and ELSEIF
clauses can e a potpourri of ybrid or traditional booleanxpression forms).The tybrid forms, since
they let you specify the sequence of instructions to compile, put the issuecEey squarely in your lap.
About the only contribtion that HLA maks to the indfcieng of the program is the insertion of a JMP
instruction to skip eer ELSEIF and ELSE clauses.

Although the lybrid form of the IF statement lets you writery eficient code that is more readable
than the traditional “compare and jump” sequence, you shadd kn mind that theytrid form is defi
nitely more dificult to read and comprehend than the IF statement with bootpegssions.Therefore, if
the HLA compiler generates reasonable code with a boolgarssion then by all means use the boolean
expression form; it will probably be easier to read.

L.7

The While Statement

The only diference between an IF statement aldHILE loop is a single JMP instruction. Of course,
with an IF and a JMP you can simulate most control structureéd/HHEE loop is probably the most typical
example of this.The typical translation frodVHILE to IF/JMP tales the folleving form:

while(expr) do
<< staterents >>

endwhi | e;

/! The above translates to:

| abel :
if(expr) then

<< statenents >>
jnp | abel;

endi f;

Pagel558 © 2001, By Randall Hyde Beta Draft - Do not distribute

HLA Code Generation for HLL Statements

Experienced assembly language programmers khat there is a slightly morefigfient implementa
tion if it is likely that the booleanxpression is true thert time the program encounters the lodphat
translation taks the folleving form:

jnp testl abel;
| abel :

<< statenents >>

test | abel :
JT(expr) |abel; /1 Note: JT means junp if expression is true.

This form contains»actly the same number of instructions as theipts translation.The diference
is that a JMP instructionas meed out of the loop so that ikecutes only once (rather than on eachtera
tion of the loop). So this is slightly mordiefent than the préous translation. HLA uses this carsion
algorithm forWHILE loops with standard boolearmessions.

L.8 repeat..until

L.9 for..endfor

L.10 forever..endfor

L.11 break, breakif

L.12 continue, continueif

L.13 begin..end, exit, exitif

L.14 foreach..endfor

L.15 try..unprotect..exception..anyexception..endtry, raise

Editorial Note:This document is a@vk in progressit some future date | will fiish the sections afze.
Until then, use the HLA “-s” compiler option to emit MASM code and study the MASM output as described
in this appendix.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel559

Appendix L

Pagel560 © 2001, By Randall Hyde Beta Draft - Do not distribute

	HLA Code Generation for HLL Statements Appendix L
	L.1 The HLA Standard Library
	L.2 Compiling to MASM Code -- The Final Word
	L.3 The HLA if..then..endif Statement, Part I
	L.4 Boolean Expressions in HLA Control Structures
	L.5 The JT/JF Pseudo-Instructions
	L.6 The HLA if..then..elseif..else..endif Statement, Part II
	L.7 The While Statement
	L.8 repeat..until
	L.9 for..endfor
	L.10 forever..endfor
	L.11 break, breakif
	L.12 continue, continueif
	L.13 begin..end, exit, exitif
	L.14 foreach..endfor
	L.15 try..unprotect..exception..anyexception..endtry, raise

