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Advanced Arithmetic Chapter Four

4.1

Chapter Overview

This chapter deals with those arithmetic operations for which assembly language is especially well
suited and high el languages are, in general, poorly suited. Jecethree main topicsx&nded precision
arithmetic, arithmetic on operands who sizes arferdifit, and decimal arithmetic.

By far, the most gtensive subject this chapterwers is multi-precision arithmetic. By the conclusion of
this chapter you will kne how to apply arithmetic and logical operations to geteoperands of grsize. If
you need to wrk with integer \alues outside the range +2 billion (or with unsignalli®s bgond four bit
lion), no sweat; this chapter will slrg/ou hav to get the job done.

Operands whose sizes are not the same also present some special problems in arithmetic operations.
For example, you may ant to add a 128-bit unsigned igéz to a 256-bit signed irger \alue. This chapter
discusses ho to corvert these tw operands to a compatible format so the operation may proceed.

Finally, this chapter discusses decimal arithmetic using the BCD (binary coded decimal) features of the
80x86 instruction set and the FPUhis lets you use decimal arithmetic in those &pplications that abso
lutely require base 10 operations (rather than binary).

4.2

Multiprecision Operations

One big adantage of assembly languagesphigh level languages is that assembly language does not
limit the size of intger operations. ¢t example, the C programming language wle$i a maximum of three
different intger sizes: short int, int, and long int On the PC, these are often 16 and 32 bigere
Although the 80x86 machine instructions limit you to processing eight, sixteen, or trortyittintegers
with a single instruction, you carvays use more than one instruction to procesgénseof ag size you
desire. If you vant to add 256 bit ingeer \alues togetheno problem, i relatvely easy to accomplish this
in assembly languag&he folloving sections describe Wwoextended warious arithmetic and logical opera
tions from 16 or 32 bits to as mahits as you please.

42.1

Multiprecision Addition Operations

The 80x86ADD instruction adds tw eight, sixteen, or thirty-tvbit number& After the ecution of
the add instruction, the 80x86 carrgdlis set if there is arverflow out of the H.O. bit of the surou can
use this information to do multiprecision addition operations. Consider dijeyau manually perform a
multidigit (multiprecision) addition operation:

Step 1: Add the least significant digits together:

289 289
+456 produces +456

5with carry 1.

1. Newer C standards also provide for a "long long int" which is usually a 64-bit integer.
2. As usual, 32 bit arithmetic is available only on the 80386 and later processors.
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Step 2: Add the next significant digits plus the carry:

1 (previous carry)
289 289
+456  produces  +456

5 45 with carry 1
Step 3: Add the nost significant digits plus the carry:

1 (previous carry)
289 289
+456  produces  +456

45 745

The 80x86 handlesxeended precision arithmetic in an identicastion, &cept instead of adding the
numbers a digit at a time, it adds them together a byted,vor dvord at a time. Consider the three double
word (96 bit) addition operation Figure 4.1

Step 1: Add the least significant words together:

.. | I - ] I

] —— - I ———
——
C

Step 2: Add the middle words together:

——— Iy 1]
———— I 1] — 1
| |
(plus carry, if any)

Step 3: Add the most significant words together:

(plus carry, if any)

I IIO

Figure 4.1 Adding Two 96-bit Objects Together

As you can see from thigfire, the idea is to break up agear operation into a sequence of smaller
operations. Since the x86 processunily is capable of adding togethat most, 32 bits at a time, the oper
ation must proceed in blocks of 32-bits or less. So tbiestiep is to add the oAL.O. double wrds together

Page854 © 2001, By Randall Hyde Version:9/9/02



Advanced Arithmetic

much as we wuld add the tw L.O. digits of a decimal nhumber together in the manual algoritfimere is
nothing special about this operation, you can us@&Bie instruction to achiee this.

The second step\nlves adding together the second pair of doulbeds in the tw 96-bit \alues.
Note that in step tay the calculation must also add in the carry out of thaqars addition (if ag). If there
was a carry out of the L.O. addition, thBD instruction sets the carryafy to one; corersely if there vas
no carry out of the L.O. addition, the earddD instruction clears the carryafy. Therefore, in this second
addition, we really need to compute the sum of treedauble vords plus the carry out of thedfi instrue
tion. Fortunately the x86 CPUs prade an instruction that doesaetly this: theADC (add with carry)
instruction. The ADC instruction uses the same syntax asAD® instruction and performs almost the
same operation:

adc( source, dest ); // dest := dest + source + C

As you can see, the only flifence between the ADD and ADC instruction is that the ADC instruction adds

in the value of the carry flag along with the source and destination operands. It also sets the flags the same
way the ADD instruction does (including setting the carry flag if there is an unsigned overflow). This is
exactly what we need to add together the middle two double words of our 96-bit sum.

In step three of Figure 4.1, the algorithm adds together the H.O. double words of the 96-bit value. Once
again, this addition operation also requires the addition of the carry out of the sum of the middle two double
words; hence the ADC instruction is needed here, as well. To sum it up, the ADD instruction adds the L.O.
double words together. The ADC (add with carry) instruction adds all other double word pairs together. At
the end of the extended precision addition sequence, the carry flag indicates unsigned overflow (if set), a set
overflow flag indicates signed overflow, and the sign flag indicates the sign of the result. The zero flag
doesn’t have any real meaning at the end of the extended precision addition (it simply means that the sum of
the H.O. two double words is zero, this does not indicate that the whole result is zero).

For example, suppose that you have two 64-bit values you wish to add together, defined as follows:

static
X qword;
Y: qword;

Suppose, also, that youant to store the sum in a third variatie that is likewise defined with the qword
type. The following x86 code will accomplish this task:

nov( (type dword X), eax ); // Add together the L.Q 32 bits
add( (type dword Y), eax ); /1 of the nunbers and store the
nov( eax, (type dword 2) ); /l result into the L.Q dword of Z
mov( (type dword X[ 4]), eax ); /1 Add together (with carry) the
adc( (type dword Y[4]), eax ); /I HQ 32 bits and store the result
mov( eax, (type dword Z[4]) ): [/ into the HQ dword of Z

Rememberthese ariables are qard objectsTherefore the compiler will not accept an instruction of
the form "ma/( X, eax );" because this instructiorowd attempt to load a 64 biale into a 32 bit igister
This code uses the coercion operator to coerce sybglandZ to 32 bits.The frst three instructions add
the L.O. double wrds of X andY together and store the result at the L.O. douldedvef Z. The last three
instructions add the H.O. doublewmis ofX andY together along with the carry out of the L.O.owd, and
store the result in the H.O. doublen of Z. Rememberaddressygressions of the form “X[4]” access the
H.O. double wrd of a 64 bit entityThis is due to theakct that the x86 address space addresses bytes and it
takes four consecute bytes to form a doubleord.

You can &tend this to aypnumber of bits by using thEDC instruction to add in the higher ordeoms
in the \alues. IBr example, to add together dal28 bit \alues, you could use code that looks somethirgy lik
the following:

type
tBig: dword[4]; // Storage for four dwords is 128 bits.

static
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Bigval 1: tBig;
Bigval 2: tBig;
Bigval 3: tBig;

Volume Four

nov( BigVal 1[0], eax ); /1 Note there is no need for (type dword Bi gval x)

add( BigVval 2[0], eax ); /'l because the base type of BitValx is dword.

mov( eax, Bigval 3[0] );

mov( BigVal 1[4], eax );
adc( Bigval 2[4], eax );
nmov( eax, Bigval3[4] );

nmov( Bigval 1[8], eax );
adc( Bigval 2[8], eax );
nov( eax, BigVal3[8] );

nov( Bigval 1[12], eax );
adc( Bigval 2[12], eax );
nov( eax, BigVal 3[12] );

4.2.2 Multiprecision Subtraction Operations

Like addition, the 80x86 performs multi-byte subtraction the saayeyou wuld manually except it
subtracts whole bytes,ords, or double wrds at a time rather than decimal digltse mechanism is similar
to that for theADD operation)You use the SUB instruction on the L.O. bytev@/double vord and thesBB
(subtract with borra) instruction on the high ordeales.The folloving example demonstrates a 64 bit

subtraction using the 32 bitgisters on the x86:

static
Left: qword,
R ght: qword;

Dff: qword,

nmov( (type dword Left), eax );
sub( (type dword R ght), eax );
nov( eax, (type dword Dff) );

nov( (type dword Left[4]), eax );

sbb( (type dword Right[4]), eax );
nov( (type dword Diff[4]), eax );

The folloving example demonstrates a 128-bit subtraction:

type

tBig: dword[4]; // Storage for four dwords is 128 bits.

static
Bigval 1: tBig;
Bigval 2: tBig;
Bigval 3: tBig;

/1 Conpute BigVal3 := BigVall - BigVal 2
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nov( BigVal 1[0], eax ); /1 Note there is no need for (type dword Bi gVal x)
sub( BigVval 2[0], eax ); /'l because the base type of BitValx is dword.
nov( eax, BigVal 3[0] );

mov( BigVal 1[4], eax );
sbb( Bigval 2[4], eax );
nmov( eax, Bigval3[4] );

nmov( Bigval 1[8], eax );
sbb( Bigval 2[8], eax );
nov( eax, BigVal3[8] );

nov( Bigval 1[12], eax );
sbb( BigVal 2[12], eax );
nov( eax, BigVal 3[12] );

4.2.3 Extended Precision Comparisons

Unfortunately there isrt a “compare with borm” instruction that you can use to perforxended
precision comparisons. Since the CMP and SUB instructions perform the same operation, atdeast as f
the flags are concerned, yoduprobably guess that you could use the SBB instruction to synthesize an
extended precision comparison,vver, you'd only be partly rightThere is, havever, a better \ay.

Consider the te unsigned &lues $2157 and $129Bhe L.O. bytes of these bwalues do not &ct the
outcome of the comparison. Simply comparing $21 with $12 tells us thatgheafie is greater than the
second. Indct, the only time youver need to look at both bytes of thesdues is if the H.O. bytes are
equal. In all other cases comparing the H.O. bytes tells yenytaing you need to kmoabout the &lues.
Of course, this is true for gmumber of bytes, not just bw The folloving code compares twnsigned 64
bit integers:

// This sequence transfers control to |ocation “IsGeater” if

/1 QnordVal ue > QuordVal ue2. It transfers control to “lIsLess” if

/1 QnordVal ue < QnordValue2. It falls though to the instruction

/1 follow ng this sequence if QordVal ue = QunordVal ue2. To test for

/1 inequality, change the “IsGeater” and “lsLess” operands to “NotEqual”
/1 in this code.

nov( (type dword QurdVal ue[4]), eax ); [/ Gt HQ dword
cnp( eax, (type dword QMrdVal ue2[4]));

jg IsGeater;

jI IsLess;

nov( (type dword QumrdvVal ue[0]), eax ); [/ If HQ dwords were equal,
cp( eax, (type dword Qwrdvalue2[0])); // then we nust conpare the
ja IsGeater; /1 L.Q dwords.

jb IsLess;

/1 Fall through to this point if the two val ues were equal .

To compare signedalues, simply use the JG and JL instructions in placé @ndl JB for the H.O.
words (only). You must continue to use unsigned comparisons forualthe H.O. double ards youre
comparing.

You can easily synthesizeyapossible comparison from the sequencevabthe follaving examples
shav how to do thisThese gamples demonstrate signed comparisons, substhuti\g, JB, and JBE for
JG, JGE, JL, and JLE (respeetly) for the H.O. comparisons if youawt unsigned comparisons.

static
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QAL: qgwor d;
QA2: qgwor d;
const
QALd: text := "(type dword QAL)";
QRd: text := "(type dword QR)";

I/l 64 bit test to see if QM < QR (signed).
/1 Control transfers to “lIsLess” label if QM < QR. Control falls
/1 through to the next statement (at "NotlLess") if this is not true.

nmov( QALd[ 4], eax ); // Gt HQ dword

cnp( eax, QM2d[4] );

j g Not Less; // Substitute ja here for unsigned conparison.
jl IsLess; // Substitute jb here for unsigned conparison.

mov( QALA[ 0], eax ); // Fall through to here if the HQ dwords are equal .
cnp( eax, QRd[0] );
jb IsLess;

Not Less:

/1l 64 bit test to see if QM <= QM (signed). Junps to "lIsLessEq" if the
/1 condition is true.

nov( QALd[ 4], eax ); // Gt HQ dword

cnp( eax, QMed[4] );

j g Not LessEQ // Substitute ja here for unsigned conparison.
jI IsLessEQ // Substitute jb here for unsigned conparison.

nmov( QALd[ 0], eax ); /1 Fall through to here if the HQO dwords are equal .
cnp( eax, QMRd[0] );
j be |sLessEQ

Not LessEQ

/1 64 bit test to see if QM > QA (signed). Junps to "Is@r" if this condition
/1 is true.

nov( QALd[ 4], eax ); /1 Gt HQ dword

cnp( eax, QRd[4] );

jg ls@r; // Substitute ja here for unsigned conparison.
il NotQr; /1 Substitute jb here for unsigned conparison.

nov( QALd[ 0], eax ); // Fall through to here if the HQ dwords are equal .
cnp( eax, QMRd[0] );
jals@r;

Not G r:

// 64 bit test to see if QM >= QMR (signed). Junps to "IsGrEQ if this
/'l is the case.

mov( QALd[ 4], eax ); // Gt HO dword

cnp( eax, QMRed[4] );

jg Is&reqQ // Substitute ja here for unsigned conpari son.
il Not&rEQ // Substitute jb here for unsigned conpari son.

nov( QAMd[ 0], eax ); // Fall through to here if the HQ dwords are equal .
cnp( eax, QMRd[0] );
jae IsGrEQ

Not G r EQ
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/1 64 bit test to see if QM = QA (signed or unsigned). This code branches
/1 to the label “IsEqual” if QM = QA. It falls through to the next instruction
/1 if they are not equal .

nov( QALd[ 4], eax ); // Gt HQ dword
cnp( eax, QMRd[4] );
j ne Not Equal ;

mov( QALd[ 0], eax ); // Fall through to here if the HQ dwords are equal .
cnp( eax, QRd[0] );
je I'sEqual ;

Not Equal :

/1 64 bit test to see if QM <> QA (signed or unsigned). This code branches
/1 to the label “NotEqual” if QM <> QMR. It falls through to the next
// instruction if they are equal.

nov( QALd[ 4], eax ); // Gt HQO dword
cnp( eax, QMed[4] );
j ne Not Equal ;

nov( QAMd[ 0], eax ); // Fall through to here if the HQ dwords are equal .
cnp( eax, QMRd[0] );
j ne Not Equal ;

/1 Fall through to this point if they are equal.

You cannot directly use the HLA highvd control structures if you need to perform ateaded preei
sion comparison. Heever, you may use the HLAwbrid control structures anduty the appropriate com
parison into this statements. Doing so will probably engkur code easier to read.orFexample, the
following if..then..else..endif statement checks to seeQW1l > QW2 using a 64-bit xtended precision
signed comparison:
if
( #

nov( QALd[ 4], eax );

cnp( eax, QMed[4] );
jg true;

nov( QALd[ 0], eax );

cnp( eax, QMRd[0] );

jna fal se;
}# ) then

<< code to execute if QM > QR >>
el se

<< code to execute if QM <= QR >>

endi f;

If you need to compare objects that argéarthan 64 bits, it isary easy to generalize the codeaho
Always start the comparison with the H.O. doubdeds of the objects andork you way davn towvards the
L.O. double vords of the objects as long as the corresponding doubisvare equal he folloving exam:
ple compares tor128-bit \alues to see if therfit is less than or equal (unsigned) to the second:

type
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t128: dword[4];

static
Bi gl: t128;
Bi g2: t128;

if

( #
mov( Bigl[12], eax );
cnp( eax, Big2[12] );
jb true;
nov( Bigl[8], eax );
cnp( eax, Big2[8] );
jb true;
mov( Bigl[4], eax );
cnp( eax, Big2[4] );
jb true;
nov( Bigl[0], eax );
cnp( eax, Big2[0] );
j nbe fal se;

}# ) then

<< Code to execute if Bigl <= Big2 >>
el se
<< Code to execute if Bigl > Big2 >>

endi f;

4.2.4 Extended Precision Multiplication

Although an 8x8, 16x16, or 32x32 multiply is usuallyfsiént, there are times when you magnuto
multiply larger \alues togetheivou will use the x86 single operand MUL and IMUL instructions for
extended precision multiplication.

Not surprisingly (in viev of hav we achiged etended precision addition usi®dC and SBB), you
use the same techniques to perforttereded precision multiplication on the x86 that you empithen
manually multiplying tve values. Consider a simpéfil form of the \@y you perform multi-digit multiplica

tion by hand:
1) Multiply the first two 2) Multiply 5*2:
digits together (5*3):
123 123
45 45
15 15
10
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3) Miltiply 5*1: 4) Miltiply 4*3:
123 123
45 45
15 15
10 10
5 5
12
5 Miltiply 4*2: 6) Miltiply 4*1:
123 123
45 45
15 15
10 10
5 5
12 12
8 8
4

7) Add all the partial products together:

123
45

15
10

The 80x86 doesxtéended precision multiplication in the same manneept that it verks
with bytes, vords, and double evds rather than digit&igure 4.2shavs hav this works

1) Multiply the L.O. words 2) Multiply D * A
[A B ] [A B ]
[C I D | [ C I D
[ D*B 1 [ D*B 1

*

D*A
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3) Multiply C times B 4) Multiply C * A

[AT B ] [A B 1]
[C [ D Cc D]

1 aB*ce [ ]

Figure 4.2 Extended Precision Multiplication

Probably the most important thing to remember when performingtandzd precision multiplication
is that you must also perform a multiple precision addition at the sameAtitieg up all the partial pred
ucts requires seral additions that will produce the resdihe followving listing demonstrates the proper
way to multiply two 64 bit \alues on a 32 bit processor:

Note: Multiplier andMultiplicand are 64 bit ariables declared in the datagseent via the qard type.
Product is a 128 bit ariable declared in the dategsgent via the qard[2] type.

program t est MJL64;
#include( "stdlib.hhf" )

type
t128: dwor d[ 4] ;

procedure MJL64( Miltiplier:qword; Miltiplicand: gword; var Product:t128 );

const
np: text := "(type dword Multiplier)";
nc: text (= "(type dword Miltiplicand)";
prd:text := "(type dword [edi])";
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begi n MUL64;
nov( Product, edi );
// Miltiply the L.Q dword of Miltiplier tines Miltiplicand.

mov( np, eax );

mul ( nt, eax ); // Miltiply L.Q dwords.
nov( eax, prd ); // Save L.Q dword of product.
nov( edx, ecx ); // Save HQ dword of partial product result.

nov( np, eax );
mul ( nc[4], eax ); [/ Miltiply np(L.Q) * nc(H Q)

add( ecx, eax ); // Add to the partial product.
adc( 0, edx ); // Don't forget the carry!
nov( eax, ebx ); /1 Save partial product for now

nov( edx, ecx );
// Miltiply the HQ word of Miltiplier with Miltiplicand.

mov( np[4], eax ); [/ Gt HQ dword of Miltiplier.

mul ( nc, eax ); /1 Miltiply by L.Q word of Miltiplicand.
add( ebx, eax ); // Add to the partial product.

nov( eax, prd[4] ); // Save the partial product.

adc( edx, ecx ); // Add in the carry!

pushf d(); /1 Save carry out here.

nmov( np[4], eax ); // Miltiply the two HQ dwords together.
mul ( nc[4], eax );

popfd(); /!l Retrieve carry from above
adc( ecx, eax ); // Add in partial product from above.
adc( 0, edx ); // Don't forget the carry!

nmov( eax, prd[8] ); // Save the partial product.
nmov( edx, prd[12] );

end MUL64;
static
opl: qgword;
op2: qword;
rslt: t128;
begi n test MJL64;

/1l Initialize the gword values (note that static objects
// are initialized with zero bits).

nov( 1234, (type dword opl ));
nov( 5678, (type dword op2 ));
MUL64( opl, op2, rslt );

/1 The following only prints the L.Q qgword, but
/1 we knowthe HQ qgword is zero so this is okay.

stdout.put( "rslt=");
st dout . put u64( (type qword rsit));

end test MJL64;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page863



Chapter Four Volume Four

Program 4.1  Extended Precision Multiplication

One thing you mustdep in mind concerning this code, it onlpnks for unsigned operand multi-
ply two signed alues you must note the signs of the operands before the multiplicatih¢a&bsolute
value of the tw operands, do an unsigned multiplication, and then adjust the sign of the resulting product
based on the signs of the original operands. Multiplication of signed operands appearsdrcibese

This example vas firly straight-forvard since it vas possible todep the partial products irasious
registers. If you need to multiply iger \alues togetheryou will need to maintain the partial products in
temporary (memory)ariables. Other than that, the algorithm tRedgram 4.1uses generalizes toyanum:
ber of double wrds.

425 Extended Precision Division

You cannot synthesize a general n-bit/m-biisibn operation using the DIV and IDIV instructions.
Such an operation must be performed using a sequence of shift and subtract instructionsti@mdely e
messyHowever, a less general operationyiding an n-bit quantity by a 32 bit quantity is easily synthesized
using the DIV instructionThis section presents both methods fdeeded precision dision.

Before describing he to perform a multi-precision dsion operation, you should note that some -oper
ations require anxéended precision dision e/en though thg may look calculable with a single DIV or
IDIV instruction. Dviding a 64-bit quantity by a 32-bit quantity is egsy long as the resulting quotiers fi
into 32 bits. The DIV and IDIV instructions will handle this directlHowever, if the quotient does nott fi
into 32 bits then you lve to handle this problem as axtended precision dision. The trick here is to
divide the (zero or signxéended) H.O dwrd of the diidend by the diisor, and then repeat the process with
the remainder and the L.O. dwd of the d¥idend. The follonving sequence demonstrates this:

static
dividend: dword[2] := [$1234, 4]; [/ = $4_0000_1234.
divisor: dword := 2; /1 dividend/divisor = $2_0000_091A

quotient: dword[2];
remai nder : dwor d;

nmov( divisor, ebx );
nov( dividend[4], eax );

xor ( edx, edx ); I/ Zero extend for unsigned division.

di v( ebx, edx:eax );

nov( eax, quotient[4] ); /1 Save HQ dword of the quotient (2).

nov( dividend[0], eax ); // Note that this code does *NOT* zero extend
di v( ebx, edx:eax ); /1 EAX into EDX before this DV instr.

nov( eax, quotient[Q] ); /1 Save L.Q dword of the quotient ($91a).
nov( edx, renainder ); /] Save away the renai nder.

Since it is perfectly lgal to dvide a \alue by one, it is certainly possible that the resulting quotient after
a dwision could require as mgits as the didend. That is wly thequotient variable in this gample is the
same size (64 bits) as tHvidend variable. Rgardless of the size of thevitiend and diisor operands, the
remainder is aays no lager than the size of theviion operation (32 bits in this case). Hencerénaain-
der variable in this gample is just a doubleard.

Before analyzing this code to seawhib works, lets tale a brief look at wi a single 64/32 dision will
not work for this particular xxample &en though the DIV instruction does indeed calculate the result for a
64/32 dvision. The nave approach, assuming that the x86 were capable of this operatigd,laok some
thing like the follaving:

/1 This code does *NOT* worKk!
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nov( dividend[0], eax ); /] Get dividend into edx:eax
nov( divident[4], edx );
di v( divisor, edx:eax ); // Divide edx:eax by divisor.

Although this code is syntactically correct and will compile, if you attempt to run this code it will raise
an ex.DivideError3 exception. The reason, if yoll remember hw the DIV instruction wrks, is that the
guotient must fiinto 32 bits; since the quotient turns out to be $2_0000_091A, it willtriotdithe EAX
register hence the resultingceeption.

Now let’s tale another look at the former code that correctly computes the 64/32 qudtiesicode
begins by computing the 32/32 quotientdividend[4]/divisor. The quotient from this dision (2) becomes
the H.O. double wrd of the final quotient. The remainder from this dsion (0) becomes thexension in
EDX for the second half of theui$ion operation.The second half didesedx:dividend[0] by divisor to
produce the L.O. doubleord of the quotient and the remainder from theésibn. Note that the code does
not zero gtend EAX into EDX prior to the second DIV instruction. EDX already contéatid bits and
this code must not disturb them.

The 64/32 diision operation abe is actually just a special case of the more genesigiah operation
that lets you diide an arbitrary sizedalue by a 32-bit disor. To achiee this, you bgin by masing the
H.O. double wrd of the dvidend into EAX and zerox¢éending this into EDX. N<, you dvide this \alue
by the dvisor. Then, without modifying EDX along theay, you store way the partial quotients, load EAX
with the ne&t lower double ward in the diidend, and diide it by the diisor. You repeat this operation until
you've processed all the doubleomls in the diidend. At that time the EDX rgister will contain the
remainderThe folloving program demonstratesvindo divide a 128 bit quantity by a 32 bitv@or, produe
ing a 128 bit quotient and a 32 bit remainder:

programt est Di v128;
#incl ude( "stdlib.hhf" )

type
t128: dwor d[ 4] ;

procedure div128

(
Di vi dend: t 128;
D vi sor: dwor d;
var Quot Adrs: t128;
var Remai nder: dword
); @odispl ay;
const
Quotient: text := "(type dword [edi])";
begi n div128;
push( eax );
push( edx );
push( edi );
nov( Quot Adrs, edi ); /1 Pointer to quotient storage.

nov( Dividend[12], eax ); /1 Begin division with the HQ dword.
xor ( edx, edx ); /1 Zero extend into EDX

div( D visor, edx:eax ); /1 Dvide HQ dword.

nov( eax, Quotient[12] ); [/l Store awnay H Q dword of quotient.

3. Windows may translate this to enlntolnstr exception.
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nov( Dividend[ 8], eax ); /1 Get dword #2 fromthe dividend
div( D visor, edx:eax ); /1 Continue the division.
nov( eax, Quotient[8] ); /1 Store away dword #2 of the quotient.
nov( Dividend[4], eax ); /1 Get dword #1 fromthe dividend.
div( D visor, edx:eax ); /1 Continue the division.
nov( eax, Quotient[4] ); /1 Store away dword #1 of the quotient.
nov( Dividend[0], eax ); /1 Get the L.Q dword of the dividend.
div( D visor, edx:eax ); /1 Finish the division.
nmov( eax, Quotient[0] ); /1l Store away the L.Q dword of the quotient.
nov( Renai nder, edi ); /] Get the pointer to the remai nder's val ue.
nmov( edx, [edi] ); /1 Store away the renai nder val ue.
pop( edi );
pop( edx );
pop( eax );

end di v128;

static
opl: t128 = [$2222_2221, $4444 4444, $6666_6666, $8888_8888];
op2: dwor d = 2;
quo: t128;

romdr:  dwor d;

begi n test D v128;

di v128( opl, op2, quo, rnmdr );

st dout . put
(
nl
nl
"After the division: " nl
nl
"Quotient = $",
quo[ 12], "_ ",
quo[8], "_",
quo[4], "_",
quo[ O], nl
"Renai nder =", (type uns32 rmmdr )
)
end testDiv128,;
Program 4.2  Unsigned 128/32 Bit Extended Precision Division

You

can gtend this code to gnnumber of bits by simply adding additional MG DIV / MOV

instructions to the sequence. tikhe &tended multiplication the pveous section presents, thistended
precision dvision algorithm verks only for unsigned operands. If you need tidédi two signed quantities,
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you must note their signs, &ltheir absolutealues, do the unsignedvdiion, and then set the sign of the
result based on the signs of the operands.

If you need to use awdsor lager than 32 bits yorg going to hee to implement the dision using a
shift and subtract stragg Unfortunately such algorithms areewy slaw. In this section wd’ develop two
division algorithms that operate on an arbitrary number of Bis first is slav but easier to understand, the
second is quite a biaster (in general).

As for multiplication, the best ay to understand Rothe computer performs\dsion is to study he
you were taught to perform longviiion by hand. Consider the operation 3456/12 and the stepsowdd w
take to manually perform this operation:

2
ZI (1) 12 goes into 34 two times. 12]_3456 (2) Subtract 24 from 35
! 2256 24 and drop down the
105 105.
. 28
143456 (3) 12 goes into 105 143456 (4) Subtract 96 from 105
24 eight times. 24 and drop down the 96.
105 105
96 96
96
(5) 12 goes into 96 (6) Therefore, 12
1 2256 exactly eight times. 1 2256 goes into 3456
BT o5 exactly 288 times.
96 96
96 96
96 96
Figure 4.3 Manual Digit-by-digit Division Operation

This algorithm is actually easier in binary since at each step you dovetdhguess
mary times 12 goes into the remainder nor do yotehta multiply 12 by your guess to obtain the
amount to subtracAt each step in the binary algorithm theigor goes into the remainderaetly
zero or one time#s an &ample, consider thewdsion of 27 (11011) by three (11):

1111011 11 goes into 11 one time.
11
1
11 |11011 Subtract out the 11 and bring down the zero.
11
00
1
11 (11011 11 goes into 00 zero times.
11
00
00
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10
11] 11011 Subtract out the zero and bring down the one.
11
00
00
01
10
11111011 11 goes into 01 zero times.
11
00
00
01
00
100
11 |11011
11
00
00 Subtract out the zero and bring down the one.
00
11
100
11 (11011
11
00
00 11 goes into 11 one time.
01
00
11
1001
11 (11011
11
00
00 This produces the final result
01 of 1001.
00
11
11
00
Figure 4.4 Longhand Division in Binary

There is a neel way to implement this binary wsion algorithm that computes the quotient and the
remainder at the same tinehe algorithm is the follwing:

Quotient := D vidend;
Remai nder := 0O;
for i:=1 to NunberBits do
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Rermai nder: Quoti ent := Rerai nder: Quotient SH. 1;
if Remai nder >= Divisor then

Remai nder : = Renmai nder - D visor;
Quotient := Quotient + 1;

endi f
endf or

NumberBitsis the number of bits in tHieemainder, Quotient, Divisor, andDividend variables. Note that
the "Quotient := Quotient + 1;" statement sets the L.O. uatient to one since this algorithm ptieusly
shifts Quotient one bit to the left.The folloving program implements this algorithm

program t est D v128b;
#include( "stdlib.hhf" )

type
t128: dwor d[ 4] ;

/1 div128-

/1

/1 This procedure does a general 128/128 division operation
/1 using the follow ng al gorithm

/1 (all variables are assuned to be 128 hit objects)
/1

/1 Quotient := Dividend;

/1 Remai nder := 0;

// for i:= 1 to NunberBits do

/1

/1 Remai nder: Quotient := Renainder: Quotient SH. 1;
/1 if Remainder >= Divisor then

/1
/1 Remai nder := Rerai nder - D visor;
/1 Quotient := Quotient + 1;
/1
/1 endif
/1 endfor
/1
procedure div128
(
Di vi dend: t 128;
Di vi sor: t128;

var Quot Adrs: t128;

var RmdrAdrs: 1128
);  @odispl ay;
const

Quotient: text := "D vidend"; // Use the Dvidend as the Quotient.
var

Renai nder: t128;
begi n div128;

push( eax );

push( ecx );

Beta Draft - Do not distribute © 2001, By Randall Hyde Page869



Chapter Four

Page870

push( edi );

nmov( O,

eax );

nov( eax, Renainder[0] );
nov( eax, Renainder[4] );
nov( eax, Renainder[8] );
nov( eax, Renainder[12]);

nov( 128, ecx );

r epeat

Volume Four

/] Set the renmai nder to zero.

/] Count off 128 bits in ECX

/1 Conput e Renai nder: Quoti ent := Remai nder: Quotient SH. 1:

shl (
rel(
rcl(
rcl(
rcl(
rcl(
rel(
rel(

D vidend[ 0] );
D vidend[ 4] );
Dividend[ 8] );
Di vidend[ 12]);
Renai nder[0] );
Renai nder[4] );
Renai nder[ 8] );
Renai nder[ 12]);

PRRPRPPRPRPPPR

/] See the section on extended
/1l precision shifts to see how
/] this code shifts 256 bhits to
/1l the left by one bit.

/1 Do a 128-bit conparison to see if the renai nder
/1 is greater than or equal to the divisor.

i f
at

)

nmov( Renai nder[12],

eax );

cnp( eax, Divisor[12] );

ja true;
jb fal se;

nmov( Renai nder|[ 8],

eax );

cnp( eax, Divisor[8] );

ja true;
jb fal se;

nmov( Renai nder[ 4],

eax );

cnp( eax, Divisor[4] );

ja true;
jb fal se;

nov( Renai nder[ 0],

eax );

cnp( eax, Divisor[0] );

jb fal se;
t hen

/! Remai nder := Renainder - D visor

nmov( Divisor[0Q], eax );
sub( eax, Remainder[0] );

nov( Divisor[4], eax );
sbb( eax, Renainder[4] );

nmov( Divisor[8], eax );
sbb( eax, Remainder[8] );

mov( Divisor[12], eax );
sbb( eax, Rerainder[12] );
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// Quotient := Quotient + 1;

add( 1, Quotient[O0] );
adc( 0, Quotient[4] );
adc( O, Quotient[8] );
adc( 0, Quotient[12] );

endi f;
dec( ecx );

until ( @ );

/1 Ckay, copy the quotient (left in the Dividend variable)
/1 and the remainder to their return | ocations.

nmov( Quot Adrs, edi );
nov( Quotient[0], eax );
nov( eax, [edi] );

nov( Quotient[4], eax );
nmov( eax, [edi+4] );
nmov( Quotient[8], eax );
nov( eax, [edi+8] );
nov( Quotient[12], eax );
nov( eax, [edi+12] );

nmov( RmdrAdrs, edi );
nov( Renainder[0], eax );
nmov( eax, [edi] );

nov( Renai nder[4], eax );
nov( eax, [edi+4] );

nov( Renai nder[8], eax );
nov( eax, [edi+8] );

nov( Renai nder[12], eax );
nov( eax, [edi+12] );

pop( edi );
pop( ecx );
pop( eax );

end di v128;

// Sone sinple code to test out the division operation:

static
opl: 1128 1= [$2222 2221, $4444 4444, $6666_6666, $8888 8889] ;
op2: 1128 =12, 0, 0, 0];
quo: t 128;
romdr:  t128;

begi n test D v128b;
di v128( opl, op2, quo, rnndr );
st dout . put

(

nl
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nl
"After the division:
nl

nl

"Quotient = $",

quo[ 12], "_",

quo[8], *_",

quo[4], "_",

quo[ O], nl

"Renai nder =", (type uns32 rmmdr )

)

end test D v128b;

Program 4.3  Extended Precision Division

This code looks simpleub there are a ¥ problems with it. First, it does not check fovidion by zero
(it will produce the alue $FFFF_FFFF_FFFF_FFFF if you attempt taddi by zero), it only handles
unsigned #lues, and it isery slav. Handling dvision by zero is &ry simple, just check thewisor aginst
zero prior to running this code and return an appropriate error code ifvikerds zero (or RAISE the
ex.DivisionError eception). Dealing with signedalues is the same as the earliesigion algorithm, this
problem appears as a programmingreise.The performance of this algorithm,ever, leaves a lot to be
desired. It5 around an order of magnitude ootworse than the DIV/IDIV instructions on the x86 andythe
are among the sheest instructions on the CPU.

There is a technique you can use to boost the performance of/tkisrdby a &ir amount: check to see
if the divisor variable uses only 32 bits. Oftervea though the disor is a 128 bit ariable, the &lue itself
fits just fne into 32 bits (i.e., the H.O. doubl®nds of Dvisor are zero). In this special case, that occurs fre
guently you can use the DIV instruction which is muaktér

4.2.6

Extended Precision NEG Operations

Although there are seral ways to ngate an gtended precisionalue, the shortestay for smaller al-
ues (96 bits or less) is to use a combination of NEG and SBB instrudiliagechnique uses thadt that
NEG subtracts its operand from zero. In partigutasets the figs the sameay the SUB instruction auld
if you subtracted the destinatioalue from zeroThis code taks the folleving form (assuming you ant to
negate the 64-bitalue in EDX:EAX):

neg( edx );
neg( eax );
sbb( 0, edx );

The SBB instruction decrements EDX if there is a berooit of the L.O. wrd of the ngation opera
tion (which alvays occurs unless EAX is zero).

To extend this operation to additional bytesyrds, or double wrds is easy; all you ka to do is start
with the H.O. memory location of the object yoarwto ngate and wrk tovards the L.O. bytélhe follow-
ing code computes a 128 bitga¢ion:

static
Val ue: dword[ 4] ;
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neg( Value[12] ); /1 Negate the HQ double word
neg( Val ue[8] ); /1 Neg previous dword in menory.
sbb( 0, Value[12] ); // Adjust HQ dword.

neg( Val ue[4] ); /1 Negate the second dword in the object
sbb( 0, Value[8] ); // Adjust third dword in object.

sbb( 0, Value[12] ); /1 Adjust the HQ dword

neg( Val ue ); // Negate the L.Q dword

sbb( 0, Value[4] ); /1 Adjust second dword in object.

sbb( 0, Value[8] ); /1 Adjust third dword i n object.

sbb( 0, Value[12] ); /1 Adjust the HQ dword

Unfortunately this code tends to get reallydarand sla since you need to propaig the carry through
all the H.O. vords after each gate operationA simpler way to ngate lager \alues is to simply subtract
that \alue from zero:

static
Val ue: dword[5]; /1 160-bit val ue

nov( 0, eax );
sub( Val ue, eax );
nov( eax, Value );

mov( 0, eax );
sbb( Val ue[ 4], eax );
nov( eax, Value[4] );

nov( 0, eax );
sbb( Val ue[ 8], eax );
mov( eax, Value[8] );

mov( 0, eax );
sbb( Val ue[ 12], eax );
nov( eax, Value[12] );

mov( O, eax );
sbb( Val ue[ 16], eax );
nov( eax, Value[16] );

4.2.7 Extended Precision AND Operations

Performing an n-byt&ND operation is ery easy — sSimphAND the corresponding bytes between the
two operands, sing the result. Br example, to perform thAND operation where all operands are 64 bits
long, you could use the folldng code:

nov( (type dword sourcel), eax );
and( (type dword source2), eax );
nov( eax, (type dword dest) );

mov( (type dword sourcel[4]), eax );

and( (type dword source2[4]), eax );
nov( eax, (type dword dest[4]) );
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This technique easilyxéends to ap number of wrds, all you need to is logicalyND the correspond
ing bytes, wrds, or double wrds together in the operands. Note that this sequence setgthadtording
to the \alue of the lasAND operation. If yolAND the H.O. double wrds last, this sets alubthe zero fig
correctly If you need to test the zeradl after this sequence, you will need to logically OR tleeresulting
double vords together (or otherwise compare them bo#iresg zero).

4.2.8

Extended Precision OR Operations

Multi-byte logical OR operations are performed in the sarag as multi-bytéAND operationsYou
simply OR the corresponding bytes in the@ twperand togethelfor example, to logically OR tev 96 bit \al-
ues, use the folleing code:

nov( (type dword sourcel), eax );
or( (type dword source2), eax );
nov( eax, (type dword dest) );

nov( (type dword sourcel[4]), eax );
or( (type dword source2[4]), eax );
nov( eax, (type dword dest[4]) );

nmov( (type dword sourcel[8]), eax )
or( (type dword source2[8]), eax );
nov( eax, (type dword dest[8]) );

As for the preious example, this does not set the zero flag properly for the entire operation. If you need to
test the zero flag after a multiprecision OR, you must logically OR the resulting double words together.

4.2.9

Extended Precision XOR Operations

Extended precision XOR operations are performed in a manner iden#®DI®OR — simply XOR the
corresponding bytes in the dwoperands to obtain thextended precision resulfhe folloving code
sequence operates onotv4 bit operands, computes theiclkeisive-or, and stores the result into a 64 bit
variable.

mov( (type dword sourcel), eax );
xor( (type dword source2), eax );
nov( eax, (type dword dest) );

mov( (type dword sourcel[4]), eax );
xor( (type dword source2[4]), eax );
mov( eax, (type dword dest[4]) );

The comment about the zeradlin the previous two sections applies here.

4.2.10 Extended Precision NOT Operations

The NOT instruction iverts all the bits in the spe@tl operand.An extended precision NDis per
formed by simply gecuting the N@ instruction on all the &fcted operands.df example, to perform a 64
bit NOT operation on thealue in (edx:eax), all you need to doXeeute the instructions:

not ( eax );
not ( edx );

Keep in mind that if youxecute the N@ instruction twice, you wind up with the originadlue.Also
note that rclusive-ORing a wlue with all ones ($ERBFFFFE or $FFFF_FFFF) performs the same operation
as the NO instruction.
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4.2.11 Extended Precision Shift Operations

Extended precision shift operations require a shift and a rotate instruction. Consider what must happen
to implement a 64 bit SHL using 32 bit operations:

1) A zero must be shifted into bit zero.

2) Bits zero through 30 are shifted into the next higher bit.

3) Bit 31 is shifted into bit 32.

4) Bits 32 through 62 must be shifted into the next higher bit.
5) Bit 63 is shifted into the carry flag.

Figure 4.5 64-bit Shift Left Operation

The two instructions you can use to implement this 32 bit shift are SHL and RCkx&mple, to shift
the 64 bit quantity in (EDX:EAX) one position to the left, yobu'se the instructions:

shl (1, eax );
rcl( 1, eax );

Note that you can only shift antended precisionalue one bit at a tim&ou cannot shift anxtended
precision operand geral bits using the CL géster Nor can you specify a constarglwe greater than one
using this technique.

To understand e this instruction sequenceovks, consider the operation of these instructions on an
individual basisThe SHL instruction shifts a zero into bit zero of the 64 bit operand and shifts bit 31 into the
carry flag.The RCL instruction then shifts the carrgdlinto bit 32 and then shifts bit 63 into the caragfl
The result is xactly what we want.

To perform a shift left on an operandgar than 64 bits you simply add additional RCL instructiéns.
extended precision shift left operationalys starts with the least sigedint word and each succeeding RCL
instruction operates on thextenost signiftant word. For example, to perform a 96 bit shift left operation
on a memory location you could use the fwilag instructions:

shl (1, (type dword Qperand[0]) );
rcl( 1, (type dword Qperand[4]) );
rcl( 1, (type dword Qperand[8]) );

If you need to shift your data by &wor more bits, you can either repeat thevalsequence the desired
number of times (for a constant number of shifts) or you can place the instructions in a loop to repeat them
some number of timesoFexample, the foll&ving code shifts the 96 bialue Operand to the left the num
ber of bits speciéd in ECX:

Shi f t Loop:

shl (1, (type dword Qperand[0]) );

rcl( 1, (type dword Qperand[4]) );

rcl( 1, (type dword Qperand[8]) );
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dec( ecx );
jnz ShiftLoop;

You implement SHR and SAR in a similaayvexcept you must start at the H.Oond of the operand
and work your way davn to the L.O. word:

/| Doubl e precision SAR

sar( 1, (type dword Qperand[8]) );
rer( 1, (type dword Qperand[4]) );
rer( 1, (type dword Cperand[0]) );

/1 Doubl e precision SHR

shr( 1, (type dword Qperand[8]) );
rer( 1, (type dword Qperand[4]) );
rer( 1, (type dword Cperand[0]) );

There is one major dérence between thetended precision shifts described here and their 8/16/32 bit
counterparts — thexeended precision shifts set thadb diferently than the single precision operations.
This is because the rotate instructiorfecfthe fags diferently than the shift instructions.ofunately the
carry is the thg most often tested after a shift operation and xtended precision shift operations (i.e.,
rotate instructions) properly set thiadl

The SHLD and SHRD instructions let youfiefently implement multiprecision shifts of\vazal bits.
These instructions ke the follaving syntax:

shl d( constant, Qperand;, Qperand, );
shid( cl, Operand,;, Operand, );
shrd( constant, Qperand;, Qperand, );
shrd( cl, Qperand;, Cperand, );

The SHLD instruction does the folling:

Temporary copy of Operandq
H.O Bit 4 3 2 1 0

Operandy
H.O Bit

B3 E

Figure 4.6 SHLD Operation

Operand; must be a 16 or 32 bitgester Operand, can be a rgister or a memory location. Both oper
ands must be the same sitbe immediate operand can beadue in the range zero through n-1, where n is
the number of bits in the twoperands; it spec#fs the number of bits to shift.

The SHLD instruction shifts bits i@perand, to the left.The H.O. bits shift into the carryafj and the
H.O. bits ofOperandl shift into the L.O. bits oDperand,. Note that this instruction does not modify the
value ofOperandy, it uses a temporary cppf Operand; during the shiftThe immediate operand speegi
the number of bits to shift. If the count is n, then SHLD shifts bit n-1 into the cagylflalso shifts the
H.O. n bits of Operand, into the L.O. nbits of Operand,. The SHLD instruction sets thead bits as fol
lows:
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» If the shift count is zero, the SHLD instruction doesn't affect any flags.
* The carry flag contains the last bit shifted out of the H.O. bit oDpeeand,.

» If the shift count is one, the overflow flag will contain one if the sign bdperand, changes

during the shift. If the count is not one, the overflow flag is undefined.
e The zero flag will be one if the shift produces a zero result.
e The sign flag will contain the H.O. bit of the result.

The SHRD instruction is similar to SHLD except, of course, it shifts its bits right rather than left. To get

a clear picture of the SHRD instruction, consider Figure 4.7

Temporary Copy of Operandq

H.O Bit 5 4 3 2 10

Operand2
H.O Bit

Figure 4.7 SHRD Operation
The SHRD instruction sets thad bits as folls:
» If the shift count is zero, the SHRD instruction doesn’t affect any flags.
* The carry flag contains the last bit shifted out of the L.O. bit oOfreeand,.
» If the shift count is one, the overflow flag will contain one if the H.O. b@mrand, changes.
If the count is not one, the overflow flag is undefined.
e The zero flag will be one if the shift produces a zero result.
e The sign flag will contain the H.O. bit of the result.
Consider the following code sequence:
static

ShiftMe: dword[3] := [ $1234, $5678, $9012 ];

nov( ShiftMe[4], eax )
shld( 6, eax, ShiftM[8] );
nov( ShiftMe[0], eax );
shid( 6, eax, ShiftMe[4] );
shl (6, ShiftMe[0] );

The frst SHLD instruction abee shifts the bits fronshiftMet+4 into ShiftMe+ 8 without afecting the

value inShiftMe+4. The second SHLD instruction shifts the bits from SHIFTME into SHIFTME+4. Finally
the SHL instruction shifts the L.O. doublem the appropriate amoufthere are tw important things to
note about this code. First, urdikhe other@ended precision shift left operations, this sequenaksv
from the H.O. double ard davn to the L.O. double wrd. Second, the carryaff does not contain the carry
out of the H.O. shift operation. If you need to presehe carry #ig at that point, you will need to push the
flags after the fst SHLD instruction and pop thads after the SHL instruction.
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You can do anx@ended precision shift right operation using the SHRD instructiororkswalmost the
same vay as the code sequenceabecept you vork from the L.O. double ard to the H.O. double avd.
The solution is left as arxercise.

4.2.12 Extended Precision Rotate Operations

The RCL and RCR operationstend in a manner almost identical to that for SHL and SHiR efam
ple, to perform 96 bit RCL and RCR operations, use thewoilpinstructions:

rcl (1, (type dword Cperand[0]) );
rcl( 1, (type dword Qperand[4]) );
rcl( 1, (type dword Cperand[8]) )

rcr( 1, (type dword Cperand[8]) );
rer( 1, (type dword Qperand[4]) );
rer( 1, (type dword Qperand[0]) );

The only diference between this code and the code fonttemded precision shift operations is that the
first instruction is a RCL or RCR rather than a SHL or SHR instruction.

Performing an>@ended precision @L or ROR instruction isrt’ quite as simple an operatiofou can
use the BTSHLD, and SHRD instructions to implement atteaded precision @L or ROR instruction.
The following code shas hav to use the SHLD instruction to do axtended precision @L:

/1 Conpute ROL( 4, EDX EAX);

nov( edx, ebx );

shld, 4, eax, edx );

shl d( 4, ebx, eax );

bt( 0, eax ); /1 Set carry flag, if desired.

An extended precision @R instruction is similar; justdep in mind that you ark on the L.O. end of
the object fist and the H.O. end last.

4.2.13 Extended Precision 1/O

Once you hee the ability to compute usingtended precision arithmetic, thextngroblem is hw do
you get thosex¢ended precisionalues into your program andwalo you display thosexeended precision
values to the user? HL\Standard Library puides routines for unsigned decimal, signed decimal, and
hexadecimal I/O for glues that are eight, 16, 32, or 64 bits in length. So as long as ywouking with \al-

ues whose size is less than or equal to 64 bits in length, you can use the Standard Library code. If you need

to input or output &lues that are greater than 64 bits in length, you will need to write woupr@cedures to
handle the operatiorilThis section discusses the stgis you will need to write such routines.

The examples in this sectionavk speciftally with 128-bit walues. The algorithms are perfectly general

and etend to ag number of bits (indeed, the 128-bit algorithms in this section are really nothing more than

an tension of the algorithms the HLA Standard Library uses for 64ahieg). If you need a set of 128-bit
unsigned 1/O routines, you will probably be able to use theviollp code as-is. If you need to handlgtar
values, simple modifations to the follwing code is all that should be necessary

The folloving examples all assume a common data type for 128ahiteg. The HLA type declaration
for this data type is one of the fallong depending on the type cdlue

type
bi ts128: dword[ 4] ;
uns128: bits128;
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int128: bits128;

4.2.13.1 Extended Precision Hexadecimal Output

Extended precision kadecimal output isery easy All you have to do is output each doublerd
component of thextended precisionalue from the H.O. doubleard to the L.O. double @rd using a call
to thestdout.putd routine. The folloving procedure doesactly this to output &its128 value:

procedure putbl128( b128: bitsl28 ); nodi spl ay;
begi n put b128;

stdout. putd( b128[12] );
stdout. putd( b128[8] );
stdout. putd( bl128[4] );
stdout. putd( bl128[0] );

end put b128;

Since HLA prwides thestdout.putq procedure, you can shorten the codevaliny callingstdout.putq
just twice:

procedure putbl128( b128: bitsl128 ); nodi spl ay;
begi n put b128;

stdout. putq( (type gword b128[8]) );
stdout. putq( (type gword b128[0]) );

end put b128;

Note that this code outputs theaguad verds with the H.O. quadavd output fist and L.O. quad ard
output second.

4.2.13.2 Extended Precision Unsigned Decimal Output

Decimal output is a little more complicated thamddecimal output because the H.O. bits of a binary
number dfect the L.O. digits of the decimal representation (thas wot true for headecimal @lues which
is why hexadecimal output is so easyJ.herefore, we will hee to create the decimal representation for a
binary number byxracting one decimal digit at a time from the number

The most common solution for unsigned decimal output is to sueelysdivide the alue by ten until
the result becomes zer®he remainder after thedi diision is a alue in the range 0..9 and thelwe cor
responds to the L.O. digit of the decimal numb&uccesse dvisions by ten (and their corresponding
remainder) gtract succesge digits in the number

Iterative solutions to this problem generally allocate storage for a string of charagereraugh to
hold the entire numbeiThen the codextracts the decimal digits in a loop and places them in the string one
by one. At the end of the comrsion process, the routine prints the characters in the stringeirseeorder
(rememberthe dvide algorithm &tracts the L.O. digitsfst and the H.O. digits last, the opposite of tlag w
you need to print them).

In this section, we will emploa recursie solution because it is a little moregelet. The recursie
solution bgins by dviding the \alue by 10 and s@ng the remainder in a locahxiable. If the quotient as
not zero, the routine recuvsly calls itself to print anleading digits fist. On return from the recuvsi call
(which prints all the leading digits), the recuesalgorithm prints the digit associated with the remainder to
complete the operation. Hesdiav the operation wrks when printing the decimahhue "123":
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e (1) Divide 123 by 10. Quotient is 12, remainder is 3.

* (2) Save the remainder (3) in a local variable and recursively call the routine with the quotient.

*  (3) [Recursive Entry 1] Divide 12 by 10. Quotient is 1, remainder is 2.

* (4) Save the remainder (2) in a local variable and recursively call the routine with the quotient.

* (5) [Recursive Entry 2] Divide 1 by 10. Quotient is 0, remainder is 1.

» (6) Save the remainder (1) in a local variable. Since the Quotient is zero, don't call the routine

recursively.

e (7) Output the remainder value saved in the local variable (1). Return to the caller (Recursive

Entry 1).

* (8) [Return to Recursive Entry 1] Output the remainder value saved in the local variable in

recursive entry 1 (2). Return to the caller (original invocation of the procedure).

* (9) [Original invocation] Output the remainder value saved in the local variable in the original

call (3). Return to the original caller of the output routine.

The only operation that requires extended precision calculation through this entire algorithm is the
"divide by 10" requirement. Everything else is simple and straight-forward. We are in luck with this algo-
rithm, since we are dividing an extended precision value by a value that easily fits into a double word, we
can use the fast (and easy) extended precision division algorithm that uses the DIV instruction (see
“Extended Precision Division” on page 864). The following program implements a 128-bit decimal output
routine utilizing this technique.

program out 128;
#include( "stdlib.hhf" );

// 128-bit unsigned integer data type:

type
uns128: dword[ 4] ;

/1 DivideByl0-

11

// Divides "divisor" by 10 using fast

/1 extended precision division algorithm
/1 that enploys the DV instruction.

/1

/! Returns quotient in "quotient"

/1 Returns remnai nder in eax.

/1 Trashes EBX, EDX, and ED .

procedure D vi deByl0( dividend: uns128; var quotient:unsl28 ); @aodi splay;
begi n Di vi deBy10;

nmov( quotient, edi );
xor ( edx, edx );

nov( dividend[12], eax );
nov( 10, ebx );

di v( ebx, edx:eax );

nov( eax, [edi+12] );

nov( dividend[8], eax );
di v( ebx, edx:eax );
nov( eax, [edi+8] );

nmov( dividend[4], eax );

di v( ebx, edx:eax );
nmov( eax, [edi+4] );
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nov( dividend[ 0], eax );
div( ebx, edx:eax );
nov( eax, [edi+0] );
nov( edx, eax );

end D vi deBy10;

/1 Recursive version of putul28.

Il A separate "shell" procedure calls this so that

// this code does not have to preserve all the registers
// it uses (and D videByl0 uses) on each recursive call.

procedure recursivePutul28( b128:uns128 ); @odi spl ay;
var

remai nder: byte;
begi n recursi vePut ul2s;

/1 Divide by ten and get the renainder (the char to print).

D vi deBy10( b128, b128 );
nov( al, renainder ); /1 Save away the renainder (0..9).

/1 If the quotient (left in bl28) is not zero, recursively
/1l call this routine to print the HQ digits.

nov( bl128[0], eax ); // 1f we logically CR all the dwords

or( b128[4], eax ); Il together, the result is zero if and
or( b128[8], eax ); // only if the entire nunber is zero.

or( b128[12], eax );

if( @z ) then

recursi vePut ul28( b128 );
endi f;
/1 Ckay, now print the current digit.
nov( renai nder, al );
or( '0', al ); // Converts 0..9 ->"'0..'9".
stdout.putc( al );
end recursi vePut ul2s;
/1 Non-recursive shell to the above routine so we don't bot her

// saving all the registers on each recursive call.

procedure putul28( bl28:uns128 ); @odi spl ay;
begi n put ul2s;

push( eax );

push( ebx );

push( edx );

push( edi );

recursi vePut ul28( b128 );
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pop( edi );
pop( edx );
pop( ebx );
pop( eax );

end put ul2s;

/] Code to test the routines above:

static
b0: uns128 :=[0, 0, 0, O]; /1l decimal =0
bl: uns128 := [1234567890, 0, 0, 0O]; /1 decimal = 1234567890
b2: uns128 := [$8000_0000, 0, 0, 0]; /] decimal = 2147483648
b3: uns128 :=[0, 1, 0, 0 ]; /1 decimal = 4294967296

|/ Largest uns128 val ue
/1 (deci mal =340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 455) :

b4: uns128 := [ $FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF ];
begi n out 128;
stdout. put ( "bO

put ul28( b0 );
stdout. new n();

I}
-

stdout. put ( "bl
putul28( bl );
stdout. new n();

1
N

stdout. put ( "b2
put ul28( b2 );
stdout. new n();

1
-

stdout. put ( "b3
putul28( b3 );
stdout. new n();

I}
-

stdout. put( "b4
putul28( b4 );
stdout. new n();

1
N

end out 128;

Program 4.4  128-bit Extended Precision Decimal Output Routine

4.2.13.3 Extended Precision Sighed Decimal Output

Once you hee an gtended precision unsigned decimal output routine, writingxéended precision
signed decimal output routine isry easy The basic algorithm tas the folleving form:

»  Check the sign of the number. If it is positive, call the unsigned output routine to print it.
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» If the number is negative, print a minus sign. Then negate the number and call the unsigned
output routine to print it.
To check the sign of an extended precision integer, of course, you simply test the H.O. bit of the number.
To negate a large value, the best solution is to probably subtract that value from zero. Here'’s a quick version
of puti128 that uses thputul28 routine from the prgous section.

procedure puti128( i128: int128 ); nodi spl ay;
begi n puti 128

if( (type int32 i128[12]) <0 ) then
stdout.put( '-' );
/1 Extended Precision Negation

push( eax );

nov( 0, eax );

sub( 1128[0], eax );
nov( eax, i128[0] );

nov( 0, eax );
sbb( i128[4], eax );
mov( eax, i128[4] );

mov( O, eax );
sbb( i128[8], eax );
nmov( eax, i128[8] );

nov( 0, eax );

sbb( i128[12], eax );
nov( eax, i128[12] );
pop( eax );

endif;
putul28( (type unsl128 i 128));

end puti 128;

4.2.13.4 Extended Precision Formatted I/O

The code in the pwous two sections prints signed and unsignedgats using the minimum number
of necessary print positionslo create nicely formatted tables aflwes you will need the eqailent of a
putil28Sze or putul28Sze routine. Once you la the "unformatted" ersions of these routines, imple
menting the formattedersions is ery easy

The first step is to write an "i128Size" and a "ul128Size" routine that computes the minimum number of
digits needed to display thalue. The algorithm to accomplish this igny similar to the numeric output
routines. In#ct, the only dierence is that you initialize a counter to zero upon entry into the routine (e.g.,
the non-recurse shell routine) and you increment this counter rather than outputting a digit on each recur
sive call. (Dont forget to increment the counter inside "i128Size" if the numberdatme; you must
allow for the output of the minus signAfter the calculation is complete, these routines should return the
size of the operand in the EAXgister

Once you hee the "i128Size" and "ul28Size" routines, writing the formatted output routinesyis v
easy Upon initial entry intguti128Sze or putul28Sze, these routines call the corresponding "size" routine
to determine the number of print positions for the number to disgfathe \alue that the "size" routine
returns is greater than the absolutdue of the minimum size parameter (passed minl28Sze or
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putul28Sze) all you need to do is call the put routine to print taki@, no other formatting is necessalfy
the absolutealue of the parameter size is greater than aheevl28Sze or ul28Sze returns, then the pro
gram must compute the fiifence between thesedwalues and print that marspaces (or otherir char
acter) before printing the number (if the parameter sthgevis positie) or after printing the number (if the
parameter sizealue is ngative). The actual implementation of theseotwoutines is left as arxercise at
the end of theslume. If you hge ary further questions about Wato do this, you can taka look at the
HLA Standard Library code for routinesdiktdout.putu32Sze.

4.2.13.5 Extended Precision Input Routines

There are a couple of fundamentafeliénces between th&tended precision output routines and the
extended precision input routines. First of all, numeric output generally occurs without possibility‘bf error
numeric input, on the other hand, must handle #mg xeal possibility of an input error such asgélechar
acters and numerioverflow. Also, HLA's Standard Library and run-time system encourages a slightly dif
ferent approach to input ceersion. This section discusses those issues th#drdiitiate input corersion
from output cowmersion.

Perhaps the biggest fiifence between input and outputwersion is thedct that output carersion is
unbracketed. That is, when corerting a numericaue to a string of characters for output, the output routine
does not concern itself with characters preceding the output string nor does it concerning itself with the char
acters folleving the numeric alue in the output stream. Numeric output routineyvexirtheir data to a
string and print that string without considering the ceinfiee., the characters before and after the string rep
resentation of the numeri@alhie). Numeric input routines cannot be seatiar; the contetual information
surrounding the numeric string isry important.

A typical numeric input operation consists of reading a string of characters from the user and then trans
lating this string of characters into an internal numeric representation.ex&mple, a statement &k
"stdin.get(i32);" typically reads a line ofxtefrom the user and cuarts a sequence of digits appearing at the
beginning of that line of tet into a 32-bit signed inger (assuming@32 is anint32 object). Note, haever,
that thestdin.get routine skips wer certain characters in the string that may appear before the actual numeric
characters. & example,stdin.get automatically skips gnleading spaces in the string. &ise, the input
string may contain additional dataybed the end of the numeric input (fotaenple, it is possible to read
two integger \alues from the same input line), therefore the inpuv@ion routine must somehadeter
mine where the numeric data ends in the input strearturkately HLA provides a simple mechanism that
lets you easily determine the start and end of the input dat@etimiters character set.

The Delimiters character set is aviable, internal to HLA, that contains the set gilecharacters that
may precede or follw a legal numeric alue. By dedult, this character set includes the end of string emark
(a zero byte), a tab charactarline feed charactea carriage return characgterspace, a comma, a colon,
and a semicolonTherefore, HLAs numeric input routines will automatically ignoreyaaracters in this
set that occur on input before a numeric string. eliike, characters from this set magdhy follow a
numeric string on input (cerrsely if any non-delimiter character folles the numeric string, HLA will
raise arex.ConversionError exception).

TheDelimiters character set is a péte \ariable inside the HLA Standard Libralthough you do not
have direct access to this object, the HLA Standard Library dogglprtwo accessor functionspnv.setDe-
limiters and conv.getDelimiters that let you access and modify thalue of this character sefThese two
functions hae the follaving prototypes (found in the "camhf" header fe):

procedure conv.setDelimters( Delins:cset );
procedure conv.getDelimters( var Delins:cset );

The conv.SetDelimiters procedure will cop the \alue of theDelims parameter into the internBlelimit-
ers character setTherefore, you can use this procedure to change the character set dntao wse a dif
ferent set of delimiters for numeric inputThe conv.getDelimiters call returns a cop of the internal

4. Technically speaking, this isn’t entirely true. It is possible for a device error (e.g., disk full) to occur. Thetikefitios
is so low that we can effectively ignore this possibility.
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Delimiters character set in theaviable you pass as a parameter tactims.getDelimiters procedure We will
use the glue returned bygonv.getDelimiters to determine the end of numeric input when writing onn o
extended precision numeric input routines.

When reading a numeri@lue from the usethe fist step will be to get a cgf theDelimiterscharae
ter set. The second step is to read and discard input characters from the user as long as those characters are
members of th®elimiters character set. Once a character is found that is not Ddheiters set, the input
routine must check this character amdlify that it is a lgal numeric characterlf not, the program should
raise arex.lllegalChar exception if the character\alue is outside the range $00..$7f or it should raise the
ex.ConversionError exception if the character is not ayé¢ numeric characterOnce the routine encounters
a numeric characteit should continue reading characters as long asvllél numeric characters; while
reading the characters the wersion routine should be translating them to the internal representation of the
numeric data. If, during cearsion, an eerflow occurs, the procedure should raisegh®al ueOutOfRange
exception.

Corversion to numeric representation should end when the procedure encountens theiriniter
character at the end of the string of digits.weéker, it is very important that the procedure does not-con
sume the delimiter character that ends the strifit is, the follaving is incorrect:

static
Delimters: cset;

conv.getDelimters( Delimters );
/1 Skip over leading delimters in the string:

while( stdin.getc() in Delimters ) do /* getc did the work */ endwhil e;
while( al in{"0.."9}) do

/1 Convert character in AL to nuneric representation and
/1 accurmul ate result. ..

stdin.getc();

endwhi | e;
if( al not inDeliniters ) then

rai se( ex. ConversionError );
endif;

The frst WHILE loop reads a sequence of delimiter charactéfben this fist WHILE loop ends, the
character irAL is not a delimiter characteiSo &r, so good.The secondVHILE loop processes a sequence
of decimal digits. First, it checks the character read in thequeWHILE loop to see if it is a decimal
digit; if so, it processes that digit and reads the wharacter This process continues until the call to
stdin.getc (at the bottom of the loop) reads a non-digit charaétiter the secondVHILE loop, the program
checks the last character read to ensure that it gabdelimiter character for a numeric inpuative.

The problem with this algorithm is that it consumes the delimiter character after the numeric string. F
example, the colon symbol is agld delimiter in the defult Delimiters character set. If the user types the
input "123:456" and>acutes the code ab, this code will properly caert "123" to the numericalue one
hundred twenty-three. ka@ver, the \ery net character read from the input stream will be the character "4"
not the colon character (":")While this may be acceptable in certain circumstances, Most programmers
expect numeric input routines to consume only leading delimiter characters and the numeric digit characters.
They do not epect the input routine to consumeydreiling delimiter characters (e.g., nyaprograms will
read the ne character andx@ect a colon as input if presented with the string "123:456"). Sidicegetc
consumes an input characgtand there is no ay to "put the character back" onto the input stream, some
other vay of reading input characters from the utfeat doesrn’consume those characters, is neéded
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The HLA Standard Library comes to the rescue byiging thestdin.peekc function. Like stdin.getc,
thestdin.peekc routine reads the reinput character from HLA internal iffer. There are tw major difer-
ences betweesgdin.peekc and stdin.getc. First, stdin.peekc will not force the input of a e line of tet
from the user if the current input line is empty (or yeualready read all thextefrom the input line).
Instead stdin.peekc simply returns zero in th&L register to indicate that there are no more characters on the
input line. Since #0 is (by dailt) a lgal delimiter character for numerialies, and the end of line is cer
tainly a legal way to terminate numeric input, thisovks out rather well.The second diérence between
stdin.getc andstdin.peekc is thatstdin.peekc does not consume the character read from the ingterb If
you call stdin.peekc several times in a ne, it will always return the same character; elise, if you call
stdin.getc immediately afteistdin.peekc, the call tostdin.getc will generally return the same character as
returned bystdin.peekc (the only &ception being the end of line condition). So although we cannot put
characters back onto the input stream aftevavecad them witlstdin.getc, we can peek ahead at thexne
character on the input stream and base our logic on that charaghe€. A corrected ersion of the pna-
ous algorithm might be the follang:

static
Delimters: cset;

conv..getDeIirriters( Delimters );
/1 Skip over leading delimters in the string:
whil e( stdin.peekc() in Delimters ) do
// 1f at the end of the input buffer, we nust explicitly read a
/!l newline of text fromthe user. stdin.peekc does not do this
/1 for us.
if( al =#0 ) then
stdi n. ReadLn();
el se
stdin.getc(); // Renove delimter fromthe input stream

endi f;

endwhi | e;
while( stdin.peekc in {"0.."9"}) do

stdin. getc(); /1 Renove the input character fromthe input stream

/1 Convert character in AL to numeric representation and
/1 accumul ate result...

endwhi | e;
if( al not inDelimters ) then

rai se( ex.ConversionkError );

endi f;

5. The HLA Standard Library routines actually buffer up input lines in a string and process characters out of the string. This
makes it easy to "peek” ahead one character when looking for a delimiter to end the input value. Your code can also do this,
however, the code in this chapter will use a different approach.
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Note that the call tetdin.peekc in the secon®WHILE does not consume the delimiter character when
the expression ealuates dlse. Hence, the delimiter character will be tha pbaracter read after this algo
rithm finishes.

The only remaining comment to n&labout numeric input is to point out that the HLA Standard
Library input routines all arbitrary underscores to appear within a numeric strifige input routines
ignore these underscore characterghis allovs the user to input strings ék"FFFF_F012" and
"1 023 596" which are a little more readable than "FFFFF012" or "1023%8&llow underscores (or gn
other symbol you choose) within a numeric input routine is quite simple; just modify the Y&t
loop abwe as follavs:

whil e( stdin.peekc in {"0..79", " _'}) do
stdin.getc(); // Read the character fromthe input stream
// 1gnore underscores while processing nuneric input.
if(al <’ ) then

/1 Convert character in AL to nuneric representation and
/1 accumul ate result. ..

endif;

endwhi | e;

4.2.13.6 Extended Precision Hexadecimal Input

As was the case for numeric outputxadecimal input is the easiest numeric input routine to write.
The basic algorithm for kadecimal string to numeric ceersion is the folleing:

» Initialize the extended precision value to zero.
» For each input character that is a valid hexadecimal digit, do the following:

. Convert the hexadecimal character to a value in the range 0..15 ($0..$F).

. If the H.O. four bits of the extended precision value are non-zero, raise an exception.
. Multiply the current extended precision value by 16 (i.e., shift left four bits).

. Add the converted hexadecimal digit value to the accumulator.

» Check the last input character to ensure it is a valid delimiter. Raise an exception if it is not.
The following program implements this extended precision hexadecimal input routine for 128-bit val-
ues.

program Xi n128;
#i ncl ude( "stdlib.hhf" );

/1 128-bit unsigned integer data type:

type
b128: dword[4];

procedure getb128( var inValue:bl28 ); @odi spl ay;
const

HexChars :={'0..'9", 'a..'"f', "A..'F, "'}
var
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Delimters: cset;
Local Val ue: b128;

n get b128;

push( eax );
push( ebx );

Il

Get a copy of the HLA standard nuneric input deliniters:

conv.getDelimters( Delinters );

11

Initialize the nuneric input value to zero:

xor( eax, eax );

nov( eax, Local Val ue[0] );
nov( eax, Local Val ue[4] );
nov( eax, Local Value[8] );
nov( eax, Local Val ue[12] );

Il
Il
11
11
11
Il
Il

CS.

Il
Il
Il

By default, #0 is a menber of the HLA Delinmters
character set. However, someone rmay have cal | ed
conv.setDelimters and renoved this character
fromthe internal Delimters character set. This
al gorithm depends upon #0 being in the Delimters
character set, so let's add that character in

at this point just to be sure.

uni onChar ( #0, Delimters );
If we're at the end of the current input

line (or the programhas yet to read any input),
for the input of an actual character.

i f( stdin.peekc() = #0 ) then

stdin. readbLn();

endi f;

/1l Skip the delimters found on input. This code is

/1 somewhat convol uted because stdin. peekc does not

/1 force the input of a newline of text if the current
// input buffer is enpty. W have to force that input
/'l ourselves in the event the input buffer is enpty.

whi | e( stdin.peekc() in Deliniters ) do

/l If we're at the end of the line, read a new |ine
/1 of text fromthe user; otherw se, renove the

/1 delimter character fromthe input stream

if( al =#0 ) then

stdin.readLn(); // Force a new input |ine.

el se
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stdin.getc(); /1 Renove the delinmter fromthe input buffer.
endi f;
endwhi | €;

/1 Read the hexadeci mal input characters and convert
/1l themto the internal representation:

whi | e( stdin. peekc() in HexChars ) do

/1 Actually read the character to renove it fromthe
/1 input buffer.

stdin.getc();
/'l 1gnore underscores, process everything el se.
if( al <>' ') then
if(a in"0.."9 ) then
and( $f, al ); // '0..'9" ->0..9
el se

and( $f, al ); // 'a/'A..'"f'/'F ->1..6
add( 9, al ); // 1..6 -> 10..15

endif;

/1 Conversion algorithmis the follow ng:
11

/1 (1) Local Val ue :
/1 (2) Local Val ue :
11

// Note that "* 16" is easily acconplished by

/1 shifting Local Value to the left four bhits.

11

/1 Overflow occurs if the HQ four bits of Local Val ue
// contain a non-zero value prior to this operation.

Local Val ue * 16.
Local Val ue + al

/1 First, check for overflow

test( $FO, (type byte Local Val ue[15]));
if( @z ) then

rai se( ex. Val ueQut & Range );
endif;

/1 Now mul tiply Local Value by 16 and add in
/1 the current hexadecimal digit (in EAX).

nov( Local Val ue[ 8], ebx );

shl d( 4, ebx, Local Val ue[12] );
nmov( Local Val ue[ 4], ebx );

shl d( 4, ebx, Local Value[8] );
nmov( Local Val ue[0], ebx );

shl d( 4, ebx, Local Val ue[4] );
shl (4, ebx );

Beta Draft - Do not distribute © 2001, By Randall Hyde Page889



Chapter Four Volume Four

add( eax, ebx );
nov( ebx, Local Val ue[0] );

endi f;
endwhi | e;
/1 Ckay, we've encountered a non-hexadeci nal character.
/1l Let's make sure it's a valid deliniter character.
/'l Rai se the ex. ConversionError exception if it's invalid.
if( al not inDelimters ) then
rai se( ex.ConversionError );

endi f;

I/l Ckay, this conversion has been a success. Let's store
/1 away the converted value into the output paraneter.

nmov( inVal ue, ebx );
nov( Local Val ue[ 0], eax );
nov( eax, [ebx] );

mov( Local Val ue[ 4], eax );
nmov( eax, [ebx+4] );

mov( Local Val ue[ 8], eax );
nov( eax, [ebx+8] );

nov( Local Val ue[ 12], eax );
nov( eax, [ebx+12] );

pop( ebx );
pop( eax );

end get b128;

/] Code to test the routines above:

static

bl: b128;

begi n Xi n128;

stdout. put( "Input a 128-bit hexadecinal value: " );
get b128( bl );
st dout . put
(
"The value is: $",
bi[12], ' _",
bi[s], ',
bi[4], ',
b1[0],
nl

)

end Xi n128;
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Program 4.5  Extended Precision Hexadecimal Input

Extending this code to handle objects that are not 128 bits longryiseasy There are only three
changes necessary: you must zero out the whole object agihaibg of the getb128 routine; when check
ing for overflow (the "test( $F(type byte Localslue[15]));" instruction) you must test the H.O. four bits of
the nev object youte processing; and you must modify the code that multiplies Laked\by 16 (via
SHLD) so that it multiplies your object by 16 (i.e., shifts it to the left four bits).

4.2.13.7 Extended Precision Unsigned Decimal Input

The algorithm for gtended precision unsigned decimal input is nearly identical to thatXadéeimal
input. In fact, the only dfierence (bgond only accepting decimal digits) is that you multiply theeeded
precision alue by 10 rather than 16 for each input character (in general, the algorithm is the sarpe for an
base; just multiply the accumulatinglue by the input baseT.he followving code demonstrateswado write
a 128-bit unsigned decimal input routine.

program U nl128;
#include( "stdlib.hhf" );

/1 128-bit unsigned integer data type:

type
ulz28: dword[4];

procedure getul28( var inValue:ul28 ); @odi splay;
var

Delimters: cset;

Local Val ue: ul2s;

Partial Sum ul2s;

begi n get ul2s;
push( eax );
push( ebx );
push( ecx );
push( edx );
/1 Get a copy of the HLA standard nuneric input deliniters:
conv.getDelinmters( Deliniters );
/1l Initialize the numeric input value to zero:
xor( eax, eax );
nov( eax, Local Val ue[0] );
nov( eax, Local Val ue[4] );

nov( eax, Local Value[8] );
nov( eax, Local Value[12] );
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// By default, #0 is a nmenber of the HLA Delimters
/'l character set. However, soneone nay have cal | ed
/'l conv.setDeliniters and renoved this character
/1 fromthe internal Deliniters character set. This
// al gorithm depends upon #0 being in the Delimters
/] character set, so let's add that character in
// at this point just to be sure.
cs.unionChar( #0, Delimters );

/1 1f we're at the end of the current input
I/ line (or the programhas yet to read any input),
/1 for the input of an actual character.
i f( stdin.peekc() = #0 ) then
stdin. readbLn();

endi f;

/1 Skip the delimters found on input. This code is
// sonewhat convol uted because stdin. peekc does not
/1l force the input of a newline of text if the current
[l input buffer is enpty. W& have to force that input
/1 ourselves in the event the input buffer is enpty.
whil e( stdin.peekc() in Delinmters ) do
/1 If we're at the end of the line, read a new line
/1 of text fromthe user; otherw se, renove the
/1 delimter character fromthe input stream
if( al =#0 ) then
stdin.readlLn(); // Force a new input |ine.
el se
stdin. getc(); /1 Renove the delinmter fromthe input buffer.
endi f;

endwhi | e;

/1 Read the decinal input characters and convert
// themto the internal representation:

whi | e( stdin.peekc() in'0.."9" ) do

/1 Actually read the character to renove it fromthe
/1 input buffer.

stdin.getc();
/1 1gnore underscores, process everything el se.

if( al <>' ') then
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and( $f, al ); /1 "0 .."9 ->0..9
mov( eax, PartialSunfO] ); // Save to add in later.

/1 Conversion algorithmis the foll ow ng:
/1
/1 (1) Local Val ue :
/1 (2) Local Val ue :
/1
// First, multiply Local Val ue by 10:

Local Val ue * 10.
Local Val ue + al

mov( 10, eax );

mul ( Local Val ue[ 0], eax );
nov( eax, Local Val ue[0] );
nov( edx, Partial Sunj4] );

mov( 10, eax );

mul ( Local Val ue[4], eax );
nov( eax, Local Val ue[4] );
nov( edx, Partial Sunj8] );
mov( 10, eax );

mul ( Local Val ue[ 8], eax );
nmov( eax, Local Value[8] );
nov( edx, Partial Sunj12] );
nmov( 10, eax );

mul ( Local Val ue[ 12], eax );
nmov( eax, Local Val ue[12] );

/Il Check for overflow This occurs if EDX
// contains a none zero val ue.

if( edx /* <> 0 */ ) then
rai se( ex.Val ueQut &0 Range );
endi f;

/1 Add in the partial suns (including the
/1 most recently converted character).

nmov( Partial Sunj0], eax );
add( eax, Local Val ue[0] );

mov( Partial Sunj4], eax );
adc( eax, Local Value[4] );

nmov( Partial Sunj8], eax );
adc( eax, Local Val ue[8] );

nmov( Partial Sunj12], eax );
adc( eax, Local Val ue[12] );

/1 Another check for overflow [If there
// was a carry out of the extended precision
/1 addition above, we've got overflow

if( @) then

rai se( ex. Val ueQut & Range );
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endi f;
endi f;
endwhi | €;

I/ Ckay, we've encountered a non-deci nal character.
/1l Let's nake sure it's a valid deliniter character.
/'l Raise the ex.ConversionError exception if it's invalid.

if( al not inDelimters ) then
rai se( ex.ConversionError );
endi f;

/1 Ckay, this conversion has been a success. Let's store
/1 away the converted value into the output paraneter.

nov( inVal ue, ebx );
mov( Local Val ug[ 0], eax );
nov( eax, [ebx] );

nmov( Local Val ue[ 4], eax );
nov( eax, [ebx+4] );

mov( Local Val ue[ 8], eax );
nmov( eax, [ebx+8] );

nov( Local Val ue[ 12], eax );
nov( eax, [ebx+12] );

pop( edx );
pop( ecx );
pop( ebx );
pop( eax );

end getul2s;

/] Code to test the routines above:

static
b1:ul2s8;

begi n U n128;

stdout. put( "lnput a 128-bit decimal value: " );
getul28( bl );
st dout . put
(
"The value is: $",
bi[12], ' _',
bi[s], ',
bi[4], '_',
b1[ 0],
nl

)

end U nl128;
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Program 4.6  Extended Precision Unsigned Decimal Input

As for hexadecimal input, xtending this decimal input to some number of bitgone 128 is dirly
easy All you need do is modify the code that zeros outLtbel Value variable and the code that multiplies
LocalValue by ten (eerflow checking is done in this same code, so there are onlgpats in this code that
require modiftation).

4.2.13.8 Extended Precision Signed Decimal Input

Once you hee an unsigned decimal input routine, writing a signed decimal input routine isTéesy
following algorithm describes hoto accomplish this:

» Consume any delimiter characters at the beginning of the input stream.

» If the next input character is a minus sign, consume this character and set a flag noting that the
number is negative.

» Call the unsigned decimal input routine to convert the rest of the string to an integer.

e Check the return result to make sure it's H.O. bit is clear. Raisext#ueOutOfRange
exception if the H.O. bit of the result is set.

» If the sign flag was set in step two above, negate the result.

The actual code is left as a programming exercise at the end of this volume.

4.3

Operating on Different Sized Operands

Occasionally you may need to compute somlee/on a pair of operands that are not the same size. F
example, you may need to add and and a double evd together or subtract a bytalwe from a werd
value.The solution is simple: jusixeend the smaller operand to the size of thgdaoperand and then do
the operation on tavsimilarly sized operandsoFsigned operands, yowwld sign &tend the smaller oper
and to the same size as they&aroperand; for unsigne@lues, you zeroxtend the smaller operandhis
works for aly operation, although the folldng examples demonstrate this for the addition operation.

To extend the smaller operand to the size of thgelapperand, use a sigrtension or zeroxd¢ension
operation (depending upon whether yeuadding signed or unsignedlwes). Once youé etended the
smaller alue to the size of the [g&r, the addition can proceed. Consider the foitgy code that adds a byte
value to a wrd value:
static

varl: byte;

var2: word;

/1 Unsi gned addition:

movzx( varl, ax );
add( var2, ax );

// Signed addition:
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novsx( varl, ax );
add( var2, ax );

In both cases, the bytawable vas loaded into thAL register extended to 16 bits, and then added to
the word operandThis code warks out really well if you can choose the order of the operations (e.g., adding
the eight bit alue to the sixteen bitalue). Sometimes, you cannot specify the order of the operations. Per
haps the sixteen bitalue is already in thAX register and you ant to add an eight bitalue to it. for
unsigned addition, you could use the faling code:

mov( var2, ax ); /!l Load 16 bit value into AX
/1 Do sone other operations |eaving
. // a 16-bit quantity in AX
add( varl, al ); // Add in the eight-bit val ue
adc( 0, ah); // Add carry into the HQ word.

The firstADD instruction in this gample adds the byte wr1 to the L.O. byte of thealue in the accu
mulator The ADC instruction abee adds the carry out of the L.O. byte into the H.O. byte of the accumula
tor. Care must be tak to ensure that tteDC instruction is present. If you lea it out, you may not get the
correct result.

Adding an eight bit signed operand to a sixteen bit sigakd\s a little more difcult. Unfortunately

you cannot add an immediatalwe (as abee) to the H.O. wrd of AX. This is because the H.Oxtension
byte can be either $00 or $Rfa register is &ailable, the best thing to do is the foliog:

nov( ax, bx ); /1 BXis the avail able register.
novsx( varl, ax );
add( bx, ax );

If an etra ragister is not @ailable, you might try the folleing code:

push( ax ); /1 Save word val ue.

novsx( varl, ax ); /1 Sign extend 8-bit operand to 16 bits.
add( [esp], ax ); /1 Add in previous word val ue

add( 2, esp); /1 Pop junk from stack

Another alternatie is to store the 16 bialue in the accumulator into a memory location and then pro
ceed as before:

nmov( ax, tenp );
novsx( varl, ax );
add( tenp, ax );

All the examples abee added a bytealue to a wrd \value. By zero or signxéending the smaller oper
and to the size of the &r operand, you can easily adg &no different sized ariables together

As a last gample, consider adding an eight bit signatlig to a quadard (64 bit) alue:

static
Qval : gwor d;
Bval :int8;

ni)vsx( Bval, eax );

cdq();

add( (type dword Qval), eax );
adc( (type dword Qval [4]), edx );

Page896 © 2001, By Randall Hyde Version:9/9/02



Advanced Arithmetic

4.4 Decimal Arithmetic

The 80x86 CPUs use the binary numbering system for theuenaternal representatio.he binary
numbering system is, baf the most common numbering system in use in computer systems toatays
long since past, lveever, there were computer systems that were based on the decimal (base 10) humbering
system rather than the binary numbering system. Consequbettyarithmetic systemas decimal based
rather than binary Such computer systems weesy popular in systems tgeted for bisiness/commercial
system@. Although systems designersvieadiscoered that binary arithmetic is almostvalys better than
decimal arithmetic for general calculations, the myth still persists that decimal arithmetic is better for mone
calculations than binary arithmeti@herefore, may software systems still specify the use of decimal arith
metic in their calculations (not to mention that there is lotsg#decode out there whose algorithms are
only stable if thg use decimal arithmetic)Therefore, despite thadt that decimal arithmetic is generally
inferior to binary arithmetic, the need for decimal arithmetic still persists.

Of course, the 80x86 is not a decimal computer; therefore veetbglay tricks in order to represent
decimal numbers using the naibinary format. The most common technique/em emplged by most
so-called decimal computers, is to uselth@ry coded decimal, or BCD representationThe BCD repre
sentation (se&Nibbles” on pageb6) uses four bits to represent the 10 possible decimal digits.binary
value of those four bits is equal to the corresponding deciahaé n the range 0..9. Of course, with four
bits we can actually represent 16feiiént \alues. The BCD format ignores the remaining six bit combina
tions.

Table 1: Binary Code Decimal (BCD) Representation

BCD

Representation Decimal Equivalent

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001 9

1010 lllegal
1011 lllegal

Ol N OO B~ WIN| L] O

6. In fact, until the release of the IBM 360 in the middle 1960’s, most scientific computer systems were binary based while
most commercial/business systems were decimal based. IBM pushed their system\360 as a single purpose solution for both
business and scientific applications. Indeed, the model designation (360) was derived from the 360 degrees on a compass so
as to suggest that the system\360 was suitable for computations “at all points of the compass" (i.e., business and scientific).
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Table 1: Binary Code Decimal (BCD) Representation

BCD

Representation Decimal Equralent

1100 lllegal
1101 lllegal
1110 lllegal
1111 lllegal

Since each BCD digit requires four bits, we can represenbdligyit BCD walue with a single byte.
This means that we can represent the decialaks in the range 0..99 using a single bygesiys 0..255 if
we treat the &lue as an unsigned binary number). Clearly igakbit more memory to represent the same
value in BCD as it does to represent the saahgevin binary For example, with a 32-bitalue you can rep
resent BCD #lues in the range 0..99,999,999 (eight sigaift digits) it you can representlues in the
range 0..4,294,967,295 (better than nine sicanifi digits) using the binary representation.

Not only does the BCD formatagte memory on a binary computer (since it uses more bits to represent
a given inteyer \alue), lut decimal arithmetic is sheer. For these reasons, you showaia the use of dec
imal arithmetic unless it is absolutely mandated fowvargapplication.

Binary coded decimal representation dodsraine big adantage wer binary representation: it igifly
trivial to corvert between the string representation of a decimal number and the BCD represeitasion.
feature is particularly benefal when vorking with fractional alues since fied and fbating point binary
representations cannoxaetly represent mgncommonly used alues between zero and one (e?gl.@).
Therefore, BCD operations can béicgént when reading from a BCD dee, doing a simple arithmetic
operation (e.g., a single addition) and then writing the B@lDevto some other diee.

44.1

Literal BCD Constants

HLA does not preide, nor do you need, a special literal BCD constant. Since BCD is just a special
form of hexadecimal notation that does not allthe \alues $A..$Fyou can easily create BCD constants
using HLAs hexadecimal notation. Of course, you mustetalare not to include the symbols.’&’ in a
BCD constant since tleare illegal BCD \alues. As an eample, consider the folldng MOV instruction
that copies the BCDalue '99’into theAL register:

mov( $99, al );

The important thing toéep in mind is that you must not use HLA literal decimal constants for BCD
values. That is, "me/( 95, al );" does not load the BCD representation for ningéyifito theAL register
Instead, it loads $5F intAL and thats an illegal BCD \alue. Any computations you attempt with igel
BCD values will produce @rbage resultsAlways remember thatyen though it seems counietuitive,
you use headecimal literal constants to represent literal B@Iues.

4.4.2

The 80x86 DAA and DAS Instructions

The integger unit on the 80x86 does not directly support BCD arithmetic. Instead, the 80x86 requires
that you perform the computation using binary arithmetic and use some auxiliary instructiongetbtben
binary result to BCDTo support packd BCD addition and subtraction withawligits per byte, the 80x86
provides two instructions: decimal adjust after additi@A@) and decimal adjust after subtractiddAS).

You would eecute these tavinstructions immediately after &4DD/ADC or SUB/SBB instruction to cer
rect the binary result in th&L register
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Two add a pair of terdigit (i.e., single-byte) BCD alues togetheryou would use the follawing

sequence:
nov( bcd_1, al ); /1 Assume that bcdl and bcd2 both contain
add( bcd_2, al ); /1 val ue BCD val ues.
daa() ;

The first two instructions abee add the tw byte \alues together using standard binary arithméftus
may not produce a correct BCD resulior lExample, ifbcd_1 contains $9 anticd 2 contains $1, then the
first two instructions abee will produce the binary sum $A instead of the correct BCD result H®DAA
instruction corrects this walid result. It checks to see if therasva carry out of theworder BCD digit
and adjusts thealue (by adding six to it) if thereag an werflow. After adjusting for gerflow out of the
L.O. digit, the DAA instruction repeats this process for the H.O. digifABsets the carry dg if the vas a
(decimal) carry out of the H.O. digit of the operation.

The DAA instruction only operates on tid. register It will not adjust (properly) for a decimal aedi
tion if you attempt to add aalue toAX, EAX, or ary other rgister Speciftally note that BA limits you
to adding tvo decimal digits (a single byte) at a timehis means that for the purposes of computing-deci
mal sums, you hee to treat the 80x86 as though it were an eight-bit processumable of adding only eight
bits at a time. If you wish to add more tham tgits togetheryou must treat this as a multiprecision eper
ation. For example, to add four decimal digits together (usifgAR you must gecute a sequence dikhe
following:

I/ Assurme "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

nov( bcd_1[0], al );
add( bcd_2[0], al );
daa();

nov( al, bcd 3[0] );
nov( bcd_1[1], al );
adc( bcd_2[1], al );
daa() ;

mov( al, bed_3[1], al );

/l Carry is set at this point if there was unsigned overfl ow
Since a binary addition of aond requires only three instructions, you can see why decimal arithmetic is so
expensivé.

The DAS (decimal adjust after subtraction) adjusts the decimal result after a binary SUB or SBB
instruction. You use it the sameay you use the PA instruction. Examples:

/1 Two-digit (one byte) decimnmal subtraction:

nov( bcd_ 1, al ); /'l Assunme that bcdl and bcd2 both contain
sub( bcd_2, al ); /1 val ue BCD val ues.
das();

// Four-digit (two-byte) decimal subtraction.
/1 Assunme "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

nov( bcd_1[0], al );
sub( bcd_2[0], al );
das();

mov( al, becd_3[0] );
nov( bed_1[1], al );
sbb( bed_2[1], al );
das();

nov( al, bcd_3[1], al );

7.You'll also soon see that it’s rare to find decimal arithmetic done this way. So it hardly matters.
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// Carry is set at this point if there was unsigned overfl ow

Unfortunately the 80x86 only pnddes support for addition and subtraction of EatiBCD \alues
using the A and DAS instructions. It does not support multiplicatioryisibn, or ai other arithmetic
operations. Because decimal arithmetic using these instructions is so limitéid;ayely see ayprograms
use these instructions.

4.4.3

The 80x86 AAA, AAS, AAM, and AAD Instructions

In addition to thgpacked decimal instructions ([AA and DAS), the 80x86 CPUs support foumpacked
decimal adjustment instructions. Unpaakdecimal numbers store only one digit per eight-bit bfgeyou
can imagine, this data representation scherasteg a considerable amount of memotyowever, the
unpacled decimal adjustment instructions support the multiplication ansiah operations, so thieare
mauginally more useful.

The instruction mnemonicsAA, AAS, AAM, and AAD stand for "ASCII adjust foAddition, Sub
traction, Multiplication, and Dision" (respectiely). Despite their name, these instructions do not process
ASCII characters. Instead, theupport an unpaekl decimal @lue inAL whose L.O. four bits contain the
decimal digit and the H.O. four bits contain zero. Note, though, that you can easéyt @ASCII dect
mal digit character to an unpakdecimal number by simpANDing AL with the value $0F

The AAA instruction adjusts the result of a binary addition ob tunpacked decimal numbers. If the
addition of those te values &ceeds 10, theAAA will subtract 10 fromAL and incremenAH by one (as
well as set the carrydt). AAA assumes that the twalues you add together wergadéunpackd decimal
values. Other than thadt thatAAA works with only one decimal digit at a time (rather thaa)twou use
it the same &y you use the BPA instruction. Of course, if you need to add together a string of decimal dig
its, using unpactd decimal arithmetic will require twice as rgaperations and, therefore, twice txe@+
tion time.

You use thédAS instruction the sameay you use the BS instruction &cept, of course, it operates on
unpacled decimal &lues rather than pae#t decimal alues. As forAAA, AAS will require twice the num
ber of operations to add the same number of decimal digits ag\@@Btruction. If you'e wondering wly
arnyone would want to use th&AA or AAS instructions, kep in mind that the unpasi format supports
multiplication and diision, while the paakd format does not. Since packing and unpacking the datais usu
ally more &pensve than verking on the data a digit at a time, #h&A and AAS instruction are more &f
cient if you hae to work with unpackd data (because of the need for multiplication anididn).

TheAAM instruction modifes the result in th&X register to produce a correct unpadkdecimal result
after multiplying two unpackd decimal digits using the MUL instruction. Because thgekrproduct you
may obtain is 81 (9*9 produces thegdast possible product of tnsingle digit alues), the result will fiin
theAL register AAM unpacks the binary result bywiiling it by 10, leaing the quotient (H.O. digit) iAH
and the remainder (L.O. digit) AL. Note thatAAM leaves the quotient and remainder irfeliént rgjisters
than a standard eight-bit DIV operation.

Technically you do not hee to use thé&\AM instruction immediately after a multiplyAAM simply
dividesAL by ten and leges the quotient and remainderAR andAL (respectvely). If you hae need of
this particular operation, you may use &&M instruction for this purpose (indeed, tretibout the only
use forAAM in most programs these days).

If you need to multiply more than baunpackd decimal digits together using MUL af&dM, you will
need to deise a multiprecision multiplication that uses the manual algorithm from earlier in this chapter
Since that is a lot of ark, this section will not present that algorithm. If you need a multiprecision decimal
multiplication, see the mésection; it presents a better solution.

TheAAD instruction, as you mighteect, adjusts aalue for unpackd decimal diision. The unusual
thing about this instruction is that you mugéeute itbefore a DIV operation. It assumes tht contains
the least signifiant digit of a tw-digit value andAH contains the most signifant digit of a tw-digit
unpacled decimal glue. It comerts these tavnumbers to binary so that a standard DIV instruction will pro
duce the correct unpaett decimal result. L&KAAM, this instruction is nearly useless for its intended pur
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pose as xended precision operations (e.g.yision of more than one or twdigits) are etremely
inefficient. Havever, this instruction is actually quite useful in itsroright. It computesX = AH*10+AL
(assuming thaAH andAL contain single digit decimalalues). You can use this instruction to easily €eon
vert a two-character string containing tBe&CII representation of aalue in the range 0..99 to a binary
value. E.g.,

nov( "9, al );

nmov( "9, ah); /1 "99" is in AH AL.
and( $0FOF, ax ); // Convert fromASC | to unpacked deci mal .
aad(); /]l After this, AX contains 99.

The decimal andSCII adjust instructions pride an &tremely poor implementation of decimal arith
metic. To better support decimal arithmetic on 80x86 systems, Intel incorporated decimal operations into
the FPU.The net section discussesWwdo use the FPU for this purpose. itwer, even with FPU support,
decimal arithmetic is inétient and less precise than binary arithmefitierefore, you should carefully
consider whether you really need to use decimal arithmetic before incorporating it into your programs.

4.4.4

Packed Decimal Arithmetic Using the FPU

To improve the performance of applications that rely on decimal arithmetic, Intel incorporated support
for decimal arithmetic directly into the FPU. Urdikhe pack&d and unpadd decimal formats of the pie
ous sections, the FPU easily suppodiigs with up to 18 decimal digits of precision, all at FPU speeds.
Furthermore, all the arithmetic capabilities of the FPU (e.g., transcendental operatiovailavkean addi
tion to addition, subtraction, multiplication, andidion. Assuming you can\ie withonly 18 digits of pre
cision and a fe& other restrictions, decimal arithmetic on the FPU is the right to go if you must use
decimal arithmetic in your programs.

The frst fact you must note when using the FPU is that it dbesally support decimal arithmetic.
Instead, the FPU pvades two instruction, FBLD and FBSTRhat cownert between pad&d decimal and
binary floating point formats when mimg data to and from the FPU.he FBLD (foat/BCD load) instruc
tion loads an 80-bit paekl BCD \alue unto the top of the FPU stack aftervasting that BCD dlue to the
IEEE binary fbating point format. Likwise, the FBSTP (@at/BCD store and pop) instruction pops the
floating point alue of the top of stack, caerts it to a packd BCD \alue, and stores the BCRlue into the
destination memory location.

Once you load a paek BCD \alue into the FPU, it is no longer BCD. slfust a fbating point alue.
This presents therfit restriction on the use of the FPU as a decimajéntprocessor: calculations are done
using binary arithmetic. If you kia an algorithm that absolutely posgiy depends upon the use of decimal
arithmetic, it maydil if you use the FPU to implement.it

The second limitation is that the FPU supports only one BCD data type: a ten-byte 18-déagyit gheack
imal value. It will not support smallealues nor will it support lger \alues. Since 18 digits is usually suf
ficient and memory is cheap, this isa’big restriction.

A third consideration is that the arsion between paekl BCD and the dlating point format is not a
cheap operationThe FBLD andFBSTP instructions can be quitewsl@more than tw orders of magnitude
slower than FLD and FSTRor example). Therefore, these instructions can be costly if g@doing simple
additions or subtractions; the cost of wension &ir outweighs the time spent adding tladues a byte at a
time using the BA and DAS instructions (multiplication and\dsion, havever, are going to beakter on
the FPU).

You may be wndering wly the FPUS pacled decimal format only supports 18 digitstter all, with
ten bytes it should be possible to represent 20 BCD digygst turns out, the FP9’pacled decimal format
uses the fst nine bytes to hold the paak BCD \alue in a standard pastt decimal format (therét byte
contains the te L.O. digits and the ninth byte holds the H.Oo taligits). The H.O. bit of the tenth byte

8. An example of such an algorithm might by a multiplication by ten by shifting the number one digit to the left. However,
such operations are not possible within the FPU itself, so algorithms that misbehave inside the FPU are actually quite rare.
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holds the sign bit and the FPU ignores the remaining bits in the tenth byte. r& wondering wly Intel
didn’t squeeze in one more digit (i.e., use the L.O. four bits of the tenth bytevid@lld9 digits of preei
sion), just leep in mind that doing soowld create some possible BCBIwes that the FPU could notaetly
represent in the na floating point format. Hence the limitation to 18 digits.

The FPU uses a orsetomplement notation for gative BCD \alues. That is, the sign bit contains a one
if the number is rgative or zero and it contains a zero if the number is pesiti zero (lile the binary one’
complement format, there aredwlistinct representations for zero).

HLA's thyte type is the standard data type yoouhd use to defie packd BCD \ariables. The FBLD
and FBSTP instructions require a tbyte operand. Unfortun#telyurrent grsion of HLA does not let you
(directly) provide an initializer for a tbyteariable. One solution is to use the @N@&RAGE option and
initialize the data follwing the \ariable declaration. df example, consider the folldng code fragment:

static
tbyteChj ect: tbyte; @ostorage
byte $21, $43, $65, 0, 0, 0, 0, O, O, O;

This thyteObject declaration tells HLA that this is a tbyte object lbdoes not xplicitly set aside an
space for theariable (seé€The Static Sections” on pad&7). The folloving BYTE directve sets aside ten
bytes of storage and initializes these ten bytes withdheeb654321 (remember that the 80x8fanizes
data from the L.O. byte to the H.O. byte in memokhile this scheme is inadant, it will get the job done.
The chapters on Macros and the Compiled Language will discuss a betteayto initialize tbyte and
gword data.

Because the FPU ceerts packd decimal slues to the internaldating point format, you can mix
pacled decimal, fhating point, and (binary) inger formats in the same calculatiofhe folloving program
demonstrate e you might achiee this:

program M xedAri t hneti c;
#include( "stdlib.hhf" )

static
th: thbyte; @ostorage;
byte $21, $43, $65,0,0,0,0,0, 0, O;

begin M xedArithnetic;

fbld( tb);

frul ( 2.0 );

fiadd( 1);

fbstp( tbh);

stdout. put( "bcd value is " );
stdout.puttb( tbh);

stdout. new n();

end M xedArithnetic;

Program 4.7  Mixed Mode FPU Arithmetic

The FPU treats paeki decimal slues as ingger \alues. Therefore, if your calculations produce frac
tional results, the FBSTP instruction will round the result according to the current FPU rounding mode. If
you need to wrk with fractional alues, you need to stick wittoéiting point results.
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45 Sample Program

The folloving sample program demonstrates BCD I/The following program preides two proce
dures, BCDin and BCDoutThese tw procedures read an 18-digit BCBlwe from the user (with possible
leading minus sign) and write a BCRlwue to the standard outputvitee.

program bedl Q
#incl ude( "stdlib.hhf" )

/1 The following is equivalent to TBYTE except it
// lets us easily gain access to the individual
/1 conponents of a BCD val ue.

type
bcd: record
LCB: dwor d;
M D8: dwor d;
HCR: byt e;
Si gn: byt e;
endr ecor d;
// BCD n-
/1

/1 This function reads a BCD value fromthe standard i nput

/1 device. The nunber can be up to 18 decinal digits |ong

// and may contain a | eading m nus sign.

/1

/1 This procedure stores the BCD value in the variabl e passed
/1 by reference as a paraneter to this routine.

procedure BCDi n( var input:tbyte ); @uodisplay;
var

bcdval : bcd;

delimters: cset;
begi n BCD n;

push( eax );
push( ebx );

/] Get a copy of the input deliniter characters and
/1l make sure that #0 is a nmenber of this set.

conv.getDelimters( delimters );
cs.unionChar( #0, delimters );

/1 Skip over any leading delimter characters in the text:

whi l e( stdin.peekc() in delimters ) do
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/1 1f we're at the end of an input line, read a new
/1 line of text fromthe user, otherw se renove the
/1 delimter character fromthe input stream
if( stdin.peekc() = #0 ) then

stdin.readLn(); // Get a new line of input text.
el se

stdin.getc(); // Renove the delineter.

endi f;

endwhi | e;

/1l Initialize our input accunulator to zero:
xor( eax, eax );

nov( eax, bcdVal .LCB );

nov( eax, bcdval .MD8 );

nmov( al, bcdval.H® );
nov( al, bcdval.Sign);

/1 1f the first character is a ninus sign, then eat it and
/1l set the sign bit to one.
if( stdin.peekc() ='-" ) then

stdin.getc(); // Eat the sign character.
nov( $80, bcdval.Sign ); // Mke this nunber negative.

endi f;
// W nust have at |east one decinal digit in this nunber:
if( stdin.peekc() not in"0.."9" ) then
rai se( ex.ConversionError );
endif;
/1 Ckay, read in up to 18 decinal digits:
whi l e( stdin.peekc() in'0.."9" ) do

stdin.getc(); // Read this decimal digit.
shi( 4, al ); /1 Move digit to HQ bits of AL

mov( 4, ebx );
r epeat

// Cheesy way to SHL bcdval by four bits and
// merge in the new character.

shi( 1, al );

rcl( 1, bcdval.LCB );
rcl( 1, bcdval .M D8 );
rcl (1, bcdval.H® );
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/] |f the user has entered nore than 18
/1 decimal digits, the carry will be set
/] after the RCL above. Test that here.

if( @) then

rai se( ex. Val ueQut & Range ) ;

endi f;
dec( ebx );
until ( @ );
endwhi | e;

// Be sure that the nunber ends with a proper delimter:
i f( stdin.peekc() not in delimters ) then
rai se( ex. ConversionError );

endi f;

/1 Ckay, store the ten-byte input result into
/1 the location specified by the paraneter.

nmov( input, ebx );

nov( bcdVal . LGB, eax );

nov( eax, [ebx] );

nov( bcdvVal . M D8, eax );

nov( eax, [ebx+4] );

nmov( (type word bcdVal . H®), ax ); // Gabs "S gn" too.
nmov( ax, [ebx+8] );

pop( ebx );
pop( eax );
end BCD n;
/1 BCDout -

/1
/1 The converse of the above. Prints the string representation
/1 of the packed BCD val ue to the standard output device.

procedure BCDout ( output:thyte ); @odispl ay;
var
g: gwor d;

begi n BCDout ;

/1 This code cheats *big tine*.

/1 It converts the BCD value to a 64-bit integer

/1 and then calls the stdout.puti 64 routine to

// actually print the nunber. |In theory, this is
// a whole | ot slower than converting the BCD val ue
// to ASA1l and printing the ASO | chars, however,
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end

/1 1/0is so much slower than the conversion that

/1 no one will notice the extra tine.
fbld( output );

fistp( q);
stdout. puti 64( q );

BCDout ;

static

begi

end

tbl: tbyte;
t b2: tbyte;
tbRslt: tbyte;

n becdl Q

stdout.put( "Enter a BCD value: " );
BCDin( thl );

stdout. put( "Enter a second BCD value: " );
BCD n( th2 );

fbld( tbl);
fbld( th2 );
fadd();

fbstp( tbRslt );

stdout. put( "The sumof " );
BCDout ( thl );

stdout.put( " + " );
BCDout ( th2 );

stdout.put( " is " );
BCDout ( tbRslt );
stdout . new n();

bcdl G

Volume Four

Program 4.8  BCD I/O Sample Program

4.6

Putting It All Together

Extended precision arithmetic is one of thosevdrs where assembly language truly shiness It’
much easier to perfornxended precision arithmetic in assembly language than in most kghlde

guages; is far more dicient to do it in assembly language, as well. Extended precision arithnastic w
perhaps, the most important subject that this chapter teaches.

Although etended precision arithmetic and logical calculations are important, what goodearéesl
precision calculations if you carget the gtend precision alues in and out of the machin@herefore, this

chapter deotes a &ir amount of space to describingahto write your evn extended precision 1/O routines.

Between the calculations and the 1/O this chapter describeseygamt’'to perform those really hairy caleula

Page906

tions youve alvays dreamed of!
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Although decimal arithmetic is mdere near as prominent as it oncasythe need for decimal arith

metic does arise on occasiomherefore, this chapter spends some time discussing BCD arithmetic on the
80x86.
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